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ABSTRACT 

 

 Variations in water temperature, salinity, pH, and oxygen concentration are stressors that 

marine invertebrates face on a daily basis. Each of these physiological stressors creates a large 

cellular demand for energy. In mammals, energy metabolism is regulated by the enzyme AMP-

activated protein kinase (AMPK), which is highly conserved during evolution. This project was 

designed to test the hypothesis that AMPK is present and activated by temperature, hypoxia, and 

anoxia stress in the lobster, Homarus americanus. 

 Animals were exposed to a rapid and progressive increase in temperature (6ºC per hour) 

beginning at 14 ºC. We measured lactate concentrations and AMPK activity and heat shock 

protein 70 (HSP70) levels in 2ºC increments (14-32ºC) in heart, muscle, and liver tissue. Lactate 

concentration remained at low control levels between 14 and 28ºC and increased significantly 

(ANOVA, p<0.05) in heart, liver, and muscle between 28°C and 30°C. In the heart, liver, and 

muscle tissues HSP70 levels remained constant during the temperature exposure. AMPK activity 

significantly increased up to 2.2±1.2 at 30°C and 2.9±0.8 fold at 33º. In the liver AMPK activity 

remained constantly low, between 14 and 28ºC, but increased up to 2.7±0.4 at 30°C and 1.9±0.5 

fold at 33º. In the muscle AMPK activity remained constantly low.  

 Secondly, lobsters were exposed for a 24 hour time period to the sub-lethal temperature 

of 28°C. The prolonged exposure to heat led to a significant increase in AMPK liver activity up 

to 2.1±0.1 fold between 0 and 24 hours. AMPK did not significantly increase in the heart or 

muscle tissues. HSP70 levels remained constant in heart, liver, and muscle tissues.  

 Lastly, to characterize the role of AMPK during hypoxia lobsters were exposed for 24 

hours to a low oxygen concentration of 4 kPa. The same measurements as described above were 

performed at 0, 4 and 24 hours. We found up to a 6-fold increase in AMPK activity and a nearly 
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40 fold increase in AMPK mRNA expression of heart tissue after 24 h of hypoxia. In the liver 

nearly a 1000 fold increase was found in AMPK mRNA expression. HSP70 mRNA and protein 

expression remained unchanged. 

 The data show that in lobsters AMPK activation is an early indicator of stress when 

cellular energy levels are depleted, as indicated by the concurrence of AMPK activation and 

lactate accumulation. The traditionally used marker, HSP70, was a less reliable indicator for 

stress. Future comparison with other crustacean species will indicate whether AMPK activation 

during stress is a more potent mechanism than HSP70 for assessing stress levels in other 

populations of invertebrates. 

INTRODUCTION 

 Climate change is a global phenomenon, however, from an individual organism stand 

point, any change in the environment is locally focused and therefore affects the physiological 

mechanisms and systems that allow these organisms to survive. Because there is such a large 

fluctuation and continuous increase in environmental parameters, such as air and water 

temperature on a global scale, it is important to understand how large scale signals are 

downscaled to the level of the organism and directly impact the organisms’ physiological niche. 

This physiological niche can be described by optimal levels of performance at the cellular level.  

Stressors, such as water temperature based on year and season, body temperature, and gas 

concentrations within the organism’s habitat, extend an organism’s physiology beyond its niche 

level constraints and drive measureable physiological processes (Helmuth et al., 2010). It is vital 

to understand how the animals’ physiology will be affected, particularly marine invertebrates, 

because of their inability to physiologically regulate body temperature and the frequent exposure 

to a wide range of water temperature fluctuations. 
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 The cellular effects of stressful conditions, such as those created by climate change, can 

be quantified using physiological parameters. Physiologists often use heat shock proteins (HSP) 

as a marker for temperature or other types of stress because HSPs are found in nearly all living 

organisms. (e.g. Hoffmann et al., 2003, Tomanek, 2005). The rare exception remains Antarctic 

eelpouts which live in an exceptionally stable thermal environment (Hoffmann et al. 2000). Heat 

shock proteins (HSPs) act as chaperones and aid in the conformational stabilization of other 

proteins, preventing the proteins from aggregating and being rendered nonfunctional (Feige et 

al., 1996, Frydman, 2001). HSPs are controlled by a transcriptionally regulated increase in gene 

expression. In a non-stressed state the cells contain HSP bound to heat shock factors (HSF). 

Once cells are exposed to heat stress, HSP and HSF dissociate. HSP binds to denaturing proteins, 

while HSF translocates to the nucleus, activating transcription of the HSP gene, resulting in the 

production of HSP messenger RNA (mRNA) (Morimoto 1993). This mRNA is then translated 

into more HSPs that further bind to denatured proteins initially damaged by stress (Sorger 1991). 

When a sufficient amount of HSP is produced, HSP will reattach itself to HSF, stopping the 

cascade. With this mechanism, the heat shock response produces a measurable time lag between 

the actual stress and the detectable HSP response. As a result of this time lag, HSP often does not 

increase until after animals are returned to control conditions (Frederich et al. 2009). 

Furthermore, the heat shock response and production of heat shock proteins adds considerably to 

the cellular ATP demand because of the ATP consuming protein folding and denaturing 

pathways.  

 In order to identify a faster indicator of cellular stress than the standard HSP, this project 

targets the enzyme AMP-activated protein kinase, AMPK. AMPK is well described in 

mammalian systems, and, is involved in various diseases, such as diabetes, heart disease and 
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obesity (Hardie & Carling 1997). The key function of AMPK is to regulate the cellular ATP 

pool. Temperature stress and ATP pool regulation are tightly connected because temperature has 

a direct effect on metabolic rate, which affects the amount of ATP used (Hardie et al. 2006).  

However, very little is known about AMPK and the role it plays in regulating ATP synthesis and 

hydrolysis in invertebrates.  

 As described in mammalian systems, the AMPK protein is a heterotrimer that consists of 

three subunits; the alpha subunit is responsible for kinase activity, while the beta subunit 

connects the alpha and gamma subunits (Hardie & Carling 1997). The gamma subunit is the 

primary site where AMP binds, thus creating a conformational change in the AMPK structure. 

During this conformational change, the alpha subunit becomes exposed, increasing binding 

activity, and allowing for further AMPK activation (Hardie and Sakamoto 2006). The activation 

of AMPK is triggered by the binding of AMP and the activation through an upstream AMPK-

kinase (AMPKK). AMP is an important indicator for metabolic rate and the respective 

breakdown of ATP, and is the first step of AMPK activation. This can be seen when ATP is 

hydrolyzed and converted to ADP and inorganic phosphate (Pi). Subsequently, the enzyme, 

adenylate kinase, converts two ADP molecules into ATP and AMP.  

ATP → ADP + Pi (ATP hydrolysis) 

2ADP → ATP + AMP (Adenylate kinase reaction) 

 

Therefore, AMP accumulates during enhanced ATP hydrolysis and is an ideal signal for 

increased energy demand. To meet this ATP demand, AMPK is consequently activated with 

increasing AMP concentrations (see figure 2). In addition to the allosteric activation of AMPK 

by AMP, AMPK is activated by phosphorylation of and upstream kinase, AMPKK, which is also 

activated by AMP. AMPKK phosphorylates AMPK at the threonine 172 site of the alpha subunit 

which leads to increased AMPK activity. Phosphorylation is the much stronger activator of 
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AMPK and therefore AMPK phosphorylation reflects the AMPK activity. Once AMPK is 

activated, it phosphorylates key enzymes of ATP consuming and producing pathways, which in 

turn maintains a constant ATP pool needed to maintain cellular activity.   

  

Figure 1: AMPK alpha, beta, and gamma subunits.  AMP binds to the gamma subunit and also activates AMPKK 

which phosphorylates AMPK at the T172 binding site of the alpha subunit.  Both mechanisms simultaneously cause 

a conformational change in the alpha and gamma subunit and activate AMPK. (from Rutter et al. 2000) 

 

 
 

Figure 2: Stress, such as exercise and nutrient depletion, leads to the accumulation of AMP which activates 

AMPKK in order to phosphorylate AMPK.  This cascade regulates ATP by either activating or inhibiting specific 

metabolic pathways in order to produce or conserve sufficient levels of ATP. (from Kemp et al. 1999) 
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 Basic thermodynamics and enzyme function cause an increase of enzymatic activity with 

temperature. Since the cellular metabolism is just the sum of multiple enzyme reactions, a 

temperature increase will accelerate cellular metabolism and therefore, ATP use. This can be 

quantified as the Q10. The ratio between two metabolic rates 10 degrees apart will be in the range 

of 2-3 (i.e. Q10 = 2-3) for most biological reactions. The doubling or tripling of cellular 

metabolism with a 10ºC increase requires an additional increase in the amount of ATP needed. 

Because of this, regulating ATP producing and ATP consuming pathways during thermal stress 

is critical.   

 Under non-stressful conditions, aerobic metabolism provides the fuel and energy needed 

to sustain and power any organism. In this metabolic pathway glycolysis yields pyruvate which 

is subsequently used in the Krebs cycle to form NADH and FADH2. NADH is the electron donor 

for the oxidative phosphorylation used to form adenosine-triphosphate (ATP). At the end of the 

aerobic cycle, a theoretical maximum of thirty six molecules of ATP is yielded for each molecule 

of glucose used as the initial carbohydrate source. The alternative metabolism, which is an 

oxygen deficient process, is called anaerobic metabolism. During oxygen deficiency, the 

anaerobic metabolism process of glycolysis produces only two molecules of pyruvate for each 

molecule of glucose used. The produced pyruvate is then converted by the enzyme lactate 

dehydrogenase into lactic acid, which is the main anaerobic end product in mammals and 

crustaceans. Extreme temperatures can lead to a transition from aerobiosis to anaerobiosis, 

therefore reducing the amount of anaerobically produced ATP, eventually leading to death. This 

transition to anaerobiosis in the presence of sufficient oxygen is caused by a temperature-induced 

failure of oxygen delivery by ventilation or circulation. Subsequently the animal experiences a 

mismatch between oxygen demand and supply, resulting in anaerobiosis during heat stress. 
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 Past research has shown the transition to anaerobiosis by heat stress in the heart tissue of 

the rock crab, Cancer irroratus, concomitant with AMPK activation, while HSP70 expression 

was delayed (Frederich et al. 2009). The activation of AMPK was actually shown to occur before 

the switch to anaerobiosis and to be a faster mechanism than elevated HSP70 expression during a 

fast progressive heat stress. Crabs were additionally exposed for 6 hours to the sub-lethal 

temperature of 26°C. As an additional adaptation to heat stress, extended exposure resulted in a 

consistent increase in AMPK mRNA levels. However, HSP70 mRNA and protein remained 

constant. The additional response in gene expression supported the conclusion that AMPK was 

an earlier marker for temperature stress than HSP70 in this crab species (Frederich et al. 2009).  

 That study raised the questions as to whether the observed early activation of AMPK 

during heat stress in the crab heart tissue is a general mechanism that can be applied to other 

crustacean species, like the lobster, and, whether the response seen was specific to heart tissue 

only. Therefore in this project we applied a similar approach and tested the temperature induced 

AMPK activation and the respective HSP70 expression, but focused on a different species, the 

commercially important lobster, Homarus americanus, and investigated the stress response in 

several different tissues. The similarities and differences between the lobster and the rock crab 

will reveal more about the mechanism of how fluctuations in temperature affects marine 

invertebrates, specifically the role of AMPK as a cellular marker. Furthermore, the switch to 

anaerobiosis at high temperatures raises the questions whether AMPK is activated by the 

increased temperature or the resulting hypoxia. To address this, we compared the temperature 

induced AMPK activation with the activation of AMPK cause by hypoxia only at control 

temperature. 
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 The lobster is a poikilotherm, an animal unable to physiologically regulate its own body 

temperature, which inhabits marine environments where yearly water temperatures can vary over 

a 25°C range (0-25°C), depending on the winds, tides, and seasons (Camacho et al. 2006). 

Because of this thermal fluctuation, the lobsters’ organ systems must physiologically adapt. The 

adaptation or reaction to temperature changes is well documented in the lobster and other 

crustaceans. The upper limit for cardiac function for lobsters that have been acclimated up to 

20°C is just about 29°C, which is 5°C warmer than lobsters that were acclimated to 4°C and 

shows that lobsters have some plasticity based on acclimation (Camacho et al. 2006). The 

original thought that crustaceans were only active during a specific “energy range”, was devised 

on maximizing energy output. However, thermal acclimatization in the environment between 

seasons or adaptation to a specific climate change event involves shifting of thermal windows for 

each organ system, such as the upper limit for cardiac function during heat stress (Pörtner 2009). 

The relationship between body temperature and different organ systems already shows that 

different unique responses occur for each organ system. However, there is not any information 

available about AMPK and the tissue specific response to temperature stress.  

 

To investigate whether AMPK is activated in a tissue specific manner in the lobster during 

temperature stress, and whether the AMPK activation due to temperature-induced hypoxia is the 

same as in temperature-independent hypoxia, we tested the following hypotheses: 

• AMPK is present and activated by temperature stress in the lobster, Homarus 

americanus.  

 

• AMPK activation and expression occurs in a tissue specific manner due to the different 

energy demands of the respective tissues. 

 

• AMPK is present and activated by hypoxia stress in the lobster, Homarus americanus.  
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MATERIALS AND METHODS 

Animals:  Lobsters (Homarus americanus) with an average carapace length 9.0±0.28 cm were 

obtained from a local fisherman in Winter Harbor, ME and Biddeford, ME. Animals were 

housed in the flow through sea water system in the Marine Science Center at 12°C for at least 24 

hour before experimentation and were fed fish and squid, ad libitum.  

 

Temperature loggers: To obtain more accurate temperature measurements in the habitat, the 

local fisherman equipped lobster traps with temperature data loggers that recorded the water 

temperature every thirty minutes over several days, providing information about the thermal 

history of the animals used. 

 

Temperature Incubations: Animals (n=5 per temperature) were exposed to a fast and 

progressive increase in temperature, beginning at 14 ºC and increasing 6ºC per hour. The lobsters 

were sacrificed at 14, 16, 18, 20, 22, 24, 26, 28, 20, and 32 ºC. In a second experiment, lobsters 

were exposed to a long sub-lethal temperature of 26 ºC for a 24 hour time period. Lobsters were 

sacrificed at control temperatures (12 ºC), after 4 hours, and after 24 hours. For both short and 

long term temperature studies tissues were extracted from the liver, heart, brain, and tail muscle. 

Tissues used to measure lactate build up in lactate dehydrogenase assays and to measure AMPK 

activity and HSP70 protein levels were flash frozen with liquid nitrogen and stored at -80°C. The 

tissues used to measure AMPK gene expression were stored in RNAlater© solution (Ambion, 

Austin, TX) at 4°C.  
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Hypoxia/Anoxia Incubations: For hypoxia exposure, lobsters were incubated at 5% oxygen (4 

kPa) for 24 hours, using a bubble stone connected to a nitrogen gas tank and a dissolved oxygen 

meter to ensure that the tank level remained stable. Lobsters were sacrificed after 0, 4, and 24 

hours. For anoxia exposure, lobsters were incubated at 0.7% oxygen for two hours (0.3kPa) for 2 

hours. Tissue for both hypoxia and anoxia experiments were extracted from the liver, heart, and 

tail muscle tissue at 0, 20, 40, 80, and 120 minutes. Tissues were used to measure lactate build 

up in lactate dehydrogenase assays and to measure AMPK activity and HSP70 protein levels 

were flash frozen with liquid nitrogen and stored at -80°C. The tissues were used to measure 

AMPK gene expression for hypoxia experiments were stored in RNAlater© solution (Ambion, 

Austin, TX) at 4°C.  

 

Lactate: The lactate concentration in each tissue sample was measured to determine the onset of 

anaerobiosis, indicating severe temperature stress. For this assay, samples were homogenized 

under liquid nitrogen and protein was removed by acid precipitation. Lactate concentrations in 

the protein free supernatant were measured in a photometric test enzyme test (Bergmeyer 1985). 

The enzyme assay measures the buildup of NADH from the reaction lactate + NAD → pyruvate 

+ NADH, catalyzed by lactate dehydrogenase. The lactate concentrations were normalized to the 

protein concentration in each sample that was measured using the Bradford method (Bradford 

1976). 

 

Heart Rate: Photoplethysmographs (IsITech, Bremerhaven, Germany), super-glued with dental 

wax to the carapace above the heart,  were used to measure heart rate. Sensors were connected to 

a digital recording device (Power Lab, AD Instruments, Mountain View, CA).  
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Reaction Time: Lobsters were exposed to the above temperature, hypoxia, and anoxia 

conditions. Lobsters were flipped over on their backs and the amount of time it took for each 

lobster to right itself was recorded in seconds. In the same experiment, the percent of animals 

that stopped righting themselves was recorded. Animals were considered not respond if 5 

minutes elapsed without a righting response.  

 

AMPK activity: AMPK activity was measured by western blots. For this method tissue samples 

were homogenized under liquid nitrogen and transferred to a buffer containing several 

phosphatase inhibitors, which were used to preserve the phosphorylation stage of the AMPK 

mechanism. After quantification of the protein concentration by the Bradford method, samples 

were diluted to equal amounts of protein concentrations and separated by SDS gel 

electrophoresis. The separated proteins were then transferred onto a nitrocellulose membrane. 

This membrane was blocked with 3% non-fat dry milk and then incubated with a primary anti-

p172 AMPK antibody that was designed for mouse tissue, but cross reacts with lobster tissue as 

well. A secondary antibody with a linked horseradish peroxidase (HRP) enzyme was used to 

induce a chemiluminescent signal of the AMPK band. Membranes were scanned and the bands 

were analyzed using Image J. See Figure 3 below for an AMPK Western gel. 

 

 

Figure 3: Representative AMPK western blot. The arrow and box indicates the row of bands that we use to analyze 

AMPK activation.  
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HSP70 protein levels: HSP70 levels were measured using western blots and anti-HSP70 

antibodies. For details of this method see above under AMPK activity. See Figure 4 below for a 

HSP70 Western gel. 

 

 

Figure 4: HSP70 western gel. The arrow and box indicates the row of bands that we use to analyze HSP70 protein 

levels. The row used for AMPK and HSP70 analysis is the same in for both gels. 
 

 

Sequencing, primer design and mRNA extraction: To design degenerate primers, we searched 

GenBank for AMPKγ protein sequences from various invertebrate and vertebrate species 

including the Cancer irroratus sequence (Frederich et. al 2009). Obtained sequences were 

aligned using the MultAlin tool (http://bioinfo.genotoul.fr/multalin/multalin.html) and from the 

alignment, conserved regions were used to design degenerate forward and reverse primers for 

PCR. For HSP70, we used primers designed for copepods have been proven to work with many 

crustacean species (Voznesensky et al. 2004). RNA was extracted and purified directly from the 

liver, heart, muscle of tail, and brain tissues, using the Promega Total RNA Isolation System, and 

then stored in RNAlater® solution. The RNA was then tested for purity, quality, and quantity by 

agarose gel electrophoresis and in a UV/VIS spectrophotometer at 260 and 280nm wavelength. 

RNA reverse transcription was used to synthesize a complementary DNA (cDNA) strand and 

was accomplished using the Invitrogen Super-Script First Strand Synthesis System. The cDNA 

was then subjected to PCR, amplifying the cDNA, with an annealing temperature of 45ºC for 

degenerate primers or 55ºC for specific primers. An agarose (8%) gel electrophoresis separated 

the cDNA. This gel was incubated in ethidium bromide solution (C21H2OBrN3) for fifteen 
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minutes. When placed under ultraviolet light, we were able to determine which primers produced 

complete DNA bands. Bands were extracted from the agarose gel, and, the DNA was purified 

and sent for sequencing to the MDIBL sequencing facility in Salsbury Cove, ME. Sequences 

were analyzed with the 4Peaks program, and, BLAST nucleotide and protein searches compared 

the given sequence with known sequences. This verified that the purified DNA is actually the 

AMPK gene. Based on the defined sequence, we created lobster specific primers using the 

idtDNA.com primer design tool (See Table 1 below).  

 

Table 1. Nucleotide sequence of Cancer irroratus primers used for amplification of AMPKγ, 

HSP70 and 18S 

Target Primer Nucleotide Sequence References 

AMPKγ, degenerate MF F2 5'-AAY ggN gTN MgN gCN gCN CCN YTN T-3' This study 

  MF R6 5'-ggR TCD ATN CAN ggN ARN CKR TgD AT-3'   

      

AMPKγ, specific LobGF1 5'-AgA GgA CCA TCg gCT TgA AAC TTg-3' This study 

  LobGF2 5'-TTC AgC ATC TAC AAT ggg CAA ggC-3'   

      

18S, specific 18S F2 5'-gCC gCA CgA gAT TgA gCA ATA ACA-3' Frederich et al. 2009 

  18S R1 5'-ATT CTA gCC gCA CgA gAT TgA gCA-3'   

      

HSP70 , degenerate Petra HSPF2 5'-gCN AA RAA YCA RgT NgC NAT gAA-3' Voznesensky et al., 2004 

  Petra HSPR2 5'-YTT YTC NgC RTC RTT NAC CAT-3'  

     

HSP70, specific LobHSPF1 5'-gAg CgA CAT gAA ACA TTg gCC CTT-3' This study 

  LobHSPR1 5'-TAC CgA ggT ATg CTT CAg CCg TTT-3'   

 

 

Quantifying gene expression: In order to determine the levels of gene expression, a Stratagene 

MX3005 Real-Time Quantitative PCR (QPCR) instruments was used. For QPCR a fluorescent 

dye (SYBR green) that binds to double stranded DNA is added to a PCR reaction and the 

fluorescence is detected after each PCR cycle. A standard dilution series of 1x, 10x, 100x, and 

1000x was used to generate a standard curve for quantifying the amount of AMPKγ gene 

Nucleotide code: g, guanine; C, cytosine; A, adenine; T, thymine; Y=T or C; R=A or g; D=A or g or T; N (any 

nucleotide) = A, g, C or T. 
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expression. To ensure that the SYBR green signal is specific to AMPK we sequenced the PCR 

product and obtained an AMPK sequence. Additionally, after each QPCR run we performed a 

melting curve analysis in which the temperature is increased stepwise while monitoring the 

fluorescence signal. If the QPCR quantifies a single specific DNA product, sharp drop of the 

fluorescence signal at a specific temperature can be observed. Figure 5 shows the 1
st
 derivation 

of the signal. The clean peak indicates that only one product was amplified. 18S was used as the 

house-keeping gene to normalize the AMPKγ signal. 

  

 
 

Figure 5: Melting curve representing the specificity of the AMPKγ QPCR curve above shows that only one product 

is amplified; the specific primers used for this quantative real time PCR were made specifically to target the 

AMPKγ gene. Bands obtained in regular PCR were sent for sequencing and confirmed this result. 

 

 

Statistics: Data was tested with the GraphPad InStat software for significant differences using a 

standard t-test, ANOVA or repeated measures ANOVA depending on the single data set and a 

Tukey post hoc test. A p<0.05 was considered significant. 
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RESULTS 

(Please Note: Immediate discussion of the respective data is often included in the results section 

due to the amount of data. A broader discussion is highlighted in the discussion section.) 

 

Part 1 – AMPK Expression in Lobster, Homarus americanus 

We tested the hypothesis that AMPK is present and activated by temperature stress in the 

lobster, Homarus americanus. Furthermore, we hypothesized that AMPK activation occurs in a 

tissue specific manner due to the different energy demands of the respective tissues. 

To show that AMPK is expressed in lobsters we designed degenerate PCR primers based 

on conserved regions of the AMPK gene in other invertebrates for the alpha, beta and gamma 

subunit. We obtained a 235 base pair DNA sequence for the gamma subunit, which shows that 

AMPK is expressed in lobsters. Below are the partial DNA and respective amino acid sequences 

of the AMPK gamma subunit. 

 Lobster Homarus americanus 

DNA sequence AMPKγ subunit  

CACAGACTTCNTCCGCATTCTTCAGAATTTCTATAACTCACCCAATCGTAA

AATGGAAGAGCTAGAGGACCATCGGCTTGAAACTTGGCGCACCGTGTTGG

AGGATGAAGTACGGCCATTGATCAGCATTCGACCAGACGAGTCTCTGTAT

GTTGCAATACGATCTCTCATCCATCATAAAATTCNCCGTCTCCCTGTTATT

GATCCCGCCNCTGGCAATGTTCTGTATATTGTCACACACAAGCGCATTCT

CAAGTTCCTTTACTTATATATCAGTGAGCTGCCCAAGCCGTCCATCCTGC

AGAAGCCTCTAAGGGACCTGGAAATCGGCACGTATAAAAACATAGAAACA

GCAAGTCAGGATACGCTCATTATAGAAGCTCTTAACAAATTTGTGGAACAC

AGAATCTCTGCCTTGCCCATTGTAGATGCTGAAGGAAAACTGGTTGATATT

TATGCCAANTTCGACGTCATCAACCTCGCCGCCG 

 

Deduced amino acid sequence 

TDFXRILQNFYNSPNRKMEELEDHRLETWRTVLEDEVRPLISIRPDESLY 

VAIRSLIHHKIXRLPVIDPAXGNVLYIVTHKRILKFLYLYISELPKPSIL 

QKPLRDLEIGTYKNIETASQDTLIIEALNKFVEHRISALPIVDAEGKLVD 

IYAXFDVINLAA 
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Figure 6: Obtained DNA sequence with translation to amino acids. 

 

 

To show that AMPK is highly conserved during evolution we aligned the 235 base pair 

DNA sequence of the gamma subunit with the AMPK DNA sequences of the rock crab, Cancer 

irroratus (GenBank accession # NP_714966.1) and the mouse, Mus musculus (GenBank 

accession # ACL 13567.1). Many attempts were made to sequence the alpha and beta subunits of 

the AMPK gene, but the results were unsuccessful and the data were not crucial for this project. 

 

 
Figure 7:Alignment of the partial lobster AMPK gamma amino acid sequence with the respective sequence 

fragment from the rock crab, Cancer irroratus and the mouse. The high sequence conservation of AMPK is easily 

visible. (Partial sequence conservation shown in blue. Complete sequence conservation shown in red.) 

 

 We additionally tested the hypothesis that AMPK expression occurs in a tissue specific 

manner due to the different energy demands of the respective tissues. The figure below (Figure 

8) shows tissue specific expression of the AMPK gene in the brain, heart, liver, and muscle 

tissues. AMPK mRNA expression was higher in tail and cardiac muscle and lower in liver and 

brain. The tail and cardiac muscle tissue were expected to have higher amounts of AMPK 

mRNA because they are the most active tissues in the lobster’s natural environment. Liver and 

brain tissues are expected to be lower in AMPK mRNA expression because the energy supply to 

these tissues remains at a constantly lower rate. Tail muscle was 6 fold higher than brain tissue, 3 

fold higher than liver tissue, and 2 fold higher than cardiac muscle tissue.  
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Figure 8: mRNA expression of the AMPK gene. AMPK gene expression for was much higher in tail and cardiac 

muscle tissues, and much lower in liver and brain tissues. (mean±SE, n=5 per data point) 

 

 This project was originally designed to examine the seasonality of temperature-induced 

activation of AMP-activated protein kinase (AMPK) in the lobster, Homarus americanus, along 

a temperature and latitudinal gradient beginning off the coast of Winter Harbor, Maine, 

continuing to Biddeford, Maine, and ending in Massachusetts Bay. In each of these three places, 

water temperature was measured in lobster traps and animals were collected for subsequent 

laboratory experiments. Available data bases were searched for temperature recordings to 

support the presence of a steep thermal gradient within this geographically limited range. The 

data from the GOMOOS data base (www.gomoos.org) over the 2008-2009 year range for the 

three buoys I01 - Eastern Maine Shelf, C02 - Casco Bay, and A01 - Massachusetts Bay, showed 

the highest spikes in water temperature for the summer months of August and September 2008 as 

11.8ºC (I01 - Eastern Maine Shelf), 14.3ºC (C02 - Casco Bay) and 15.8ºC (A01 - Massachusetts 

Bay). Each of these buoys only measured water temperature at a depth 150 meters below the 

surface. However when attaching temperature loggers to traps in Biddeford and Winter Harbor, 
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Maine, we found no significant variation in temperature recordings between different seasons. 

AMPK expression was compared in lobsters caught in June and October, months that were 

reported to vary in temperature significantly in the GOMOOS database, and showed no 

difference in temperature (8.2 in June and 6.4 in October) as well as AMPK mRNA expression 

(Figure 8). With the unexpected problem of not being able to sample animals from different 

temperatures throughout the year, the original thermal gradient idea was abandoned and this 

thesis work explored AMPK activation in a tissue specific manner and in the presence of 

different forms of stress. 

 

Part 2 – Fast Progressive Temperature Stress 

Lobsters (n=5) were exposed to a rapid and progressive increase in temperature, 

beginning at 14 ºC and increasing at a rate of 6ºC per hour. Heart rate, measured between 14 and 

33ºC, increased significantly (ANOVA, p<0.05) from 43.9±6.8 min
-1 

at 14ºC to 126.4±16.3 min
-1

 

at 31ºC with a Q10(14°C-30°C) of 1.79 and a p < 0.001 (Figure 9).  

 
Figure 9: Heart rate for short term progressive temperature stress. Heart rate increased significantly (ANOVA, 

p<0.05) from 43.9±6.8 min
-1 

at 14ºC to 126.4±16.3 min
-1

 at 31ºC with a Q10(14°C-30°C) of 1.79 and a p< 0.001. 30°C 

was selected because it had the highest average heart rate. Death occurred at 33°C. (mean±SE, n=5 per data point) 

 

∗ death 
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During the same experimental parameters reaction time was recorded. Lobsters were flipped on 

their backs in two degree Celsius increments and the time it took for each animal to right itself 

was recorded. Figure 10A shows that at 28°C lobsters start to significantly slow down in righting 

themselves. A repeated measures ANOVA revealed a p-value = 0.073, which is not statistically 

significant. However, for the repeated measures ANOVA we needed to exclude the 30°C and 

32°C data points because some of the lobsters stopped turning. Therefore, we did a one-way 

ANOVA, which shows a significant effect of temperature on reaction time, p-value = 0.0134. 

Despite this change in statistical analysis, the data clearly show the trend of animals slowing 

down during the heat stress.  The percent of animals that stopped righting themselves as the 

temperature increase can be seen in figure 10B. Heart rate and reaction time experiments were 

performed to measure thermal stress at the whole animal level. At the organism level, it is clear 

that thermal stress is present, indicating further investigation of the physiological stress 

mechanisms at the tissue and cellular levels is merited. 

 

 
Figure 10: Reaction time decreased in the graph on the left indicating that lobster’s started to slow in the righting 

response between 26° and 33°C. A regular ANOVA shows a significant effect of temperature on reaction time, p-

value = 0.0134. The graph on the right shows the percent of animals that stopped responding; 30° and 32°C are the 

temperature points where animals were incapable of responding. (mean±SE, n=5 per data point) 

A B 
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Lactate concentration remained at low control levels between 14 and 28ºC (in nmol/g 

protein: 4.0±1.0, 3.5±0.9, 14.9 ±4.7, heart, liver, muscle, respectively) (Figure 11). Lactate levels 

increased significantly at 33°C (ANOVA, p<0.05) to 151.4±6.8 nmol/g protein in heart, 

236.0±7.0 nmol/g protein in liver and 144.1±3.1 nmol/g protein in muscle. In the heart, liver, and 

muscle western blot analysis, HSP70 levels remained constant and were not significant during 

the temperature exposure (ANOVA, p>0.05). In the heart, AMPK activity increased linearly 

(ANOVA, p<0.05) up to 2.2±1.2 at 30 ºC 2.9±0.8 fold at 33ºC with a p-value = 0.0031. In the 

liver AMPK activity remained constantly low, between 14 and 28ºC, but increased significantly 

(ANOVA, p<0.05) up to 2.7±0.4 at 30ºC and 1.9±0.5 fold at 33ºC with a p-value = 0.0018. In 

the muscle AMPK activity remained constantly low and showed no significant increase 

(ANOVA, p>0.05). 

The data show that lobsters, during severe heat stress, switch to anaerobic metabolism 

between 28 and 30ºC and that AMPK activation is an earlier indicator of heat stress and an 

adaptation for energy requirements when compared to the well established HSP70 response. The 

observed increases in AMPK activity, specifically in the lobster heart and liver tissues, confirm 

this hypothesis. The constantly low AMPK activity in the muscle may be explained by the heat-

induced torpor. The inactivity of the muscle tissue at higher temperatures suggests that since 

decreased motor activity requires small amounts energy, AMPK activation does not occur. A key 

finding of this study part of the study is that tissue-specific AMPK activation patterns exist 

during heat stress. This result has not yet been reported for any other animal.  
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Figure 11: Lactate concentration, HSP70 protein levels, and AMPK activity in Lobster heart, hepatopancreas and 

claw muscle tissue (n=5 for all data). Lactate concentration 14 and 28ºC (in nmol/g protein: 4.0±1.0, 3.5±0.9, 14.9 

±4.7, heart, liver, muscle, respectively). Lactate levels at 33°C (ANOVA, p<0.05) to 151.4±6.8 nmol/g protein in 

heart, 236.0±7.0 nmol/g protein in liver and 144.1±3.1 nmol/g protein in muscle. HSP70 levels for all tissues 

remained constant and were not significant during the temperature exposure (ANOVA, p>0.05). AMPK activity 

increased linearly (ANOVA, p<0.05) up to 2.2±1.2 at 30 ºC 2.9±0.8 fold at 33ºC with a p-value = 0.0031. In the 

liver AMPK activity remained constantly low, between 14 and 28ºC, but increased significantly (ANOVA, p<0.05) 

up to 2.7±0.4 at 30ºC and 1.9±0.5 fold at 33ºC with a p-value = 0.0018. In the muscle AMPK activity remained 

constantly low and showed no significant increase (ANOVA, p>0.05). (mean±SE, n=5 per data point) 

 

 

Part 3 – Sub-lethal Temperature Stress 

Lobsters were exposed to 24 hour incubation at 28°C, a sub-lethal temperature that 

showed AMPK activation in the fast and progressive temperature study. The fast, progressive 

temperature increase described above results in an immediate response to thermal stress, shown 

by the fast activation of AMPK. The sub-lethal thermal stress study tests whether AMPK and 

HSP70 are affected differently during a period of extended thermal stress. The 28°C temperature 
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was chosen because it was previously identified as a temperature in which animals could survive 

without being overtaxed for energy on the cellular level. Heart rate, measured in two hour 

increments from 0 to 24 hours, increased significantly (ANOVA, p<0.05) from 26.9±0.7 min
-1 

at 

time point 0 to 101.7±0.7 min
-1

 at 6 hours with a p-value < 0.0001, and remained constant at 

91.8±2.9 min
-1

 between 6 hours and 24 hours (Figure 12).  

 
Figure 12. Heart rate data was collected for a sub-lethal temperature stress at a constant 28°C. Heart rate increased 

significantly (ANOVA, p<0.05) from 26.9±0.7 min
-1 

at time point 0 to 101.7±0.7 min
-1

 at 6 hours with a p-value < 

0.0001, and remained constant at 91.8±2.9 min
-1

 value between 6 hours and 24 hours. (mean±SE, n=5 per data 

point) 

 
 

During the same experiment, reaction time was recorded. Lobsters were flipped on their backs at 

the 0, 4, and 24 hour time points and the time it took for each animal to right itself was recorded. 

Figure 11 shows that from 6 to 10 hours lobsters start to significantly slow down in righting 

themselves before returning to normal righting rates around 22 hours. A repeated measures 

ANOVA showed significant increase at 6, 8, and 10 hours (ANOVA, p<0.05) and a p-value = 

0.0001 (Figure 13).  
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Figure 13. The reaction time graph shows that from 6 to 10 hours lobsters start to significantly slow down in 

righting themselves before returning to normal righting rates around 22 hours. When doing statistical analysis, a 

repeated measures ANOVA showed significant increase at 6, 8, and 10 hours (ANOVA, p<0.05) and a p-value = 

0.0001. (mean±SE, n=5 per data point) 

 

Lactate concentration remained at low control levels between 0 and 4 (in nmol/g protein: 

3.2±0.6, 2.7±0.6, 7.1 ±2.3 in heart, liver, and muscle respectively) (Figure 14). Lactate increased 

between 0 and 24 hours significantly (ANOVA p<0.05) in the heart tissue from 3.2±0.6 to 

27.4±7.3 nmol/g with a p value = 0.0019. Lactate increased between 0 and 4 hours significantly 

(ANOVA p<0.05) in the liver tissue from 2.7 ±0.6 to 3.0±1.5 nmol/g and between 0 and 24 

hours from 2.7 ±0.6 to 20.7±5.2 nmol/g with a p value = 0.0016. Lactate increased between 0 

and 24 hours significantly (ANOVA p<0.05) in the tail muscle tissue from 7.1 ±2.3 to 

22.9±10.22 nmol/g with a p value = 0.010.  In the heart, liver, and muscle western blot analysis, 

HSP70 levels remained constant and were not significant during the temperature exposure 

(ANOVA, p>0.05). AMPK activity remained constant and changes were not significant during 

the temperature exposure (ANOVA, p>0.05). In the liver, AMPK activity increased significantly 

(ANOVA, p<0.05) from 1.1±0.07 up to 1.3±0.2 between 0 and 4 hours and up to 2.1±0.1 

between 0 and 24 hours with a p-value = 0.0038.  
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The data show that lobsters (Figure 14), during constant temperature stress, switch to 

anaerobic metabolism after four hours and activate AMPK as an earlier indicator of heart stress 

than the well established response given by HSP70 expression in the liver tissue only. The 

insignificant change in the AMPK activity of the heart can be directly correlated to the heart rate 

data; there were gradual increases followed by a constant heart rate for the majority of the 

experiment time. Since the lobsters were not experiencing a continuous increase in temperature, 

they may have been able to adapt to the constant temperature in the heart tissue specifically. 

Again, the continual increase in AMPK activity in the muscle may be explained by the heat-

induced torpor. The data below are collected from five animals at each time point. 
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Figure 14. Lactate was at control levels between 0 and 4 (in nmol/g protein: 3.2±0.6, 2.7±0.6, 7.1 ±2.3 in heart, 

liver, and muscle respectively). Lactate increased between 0 and 24 hours significantly (ANOVA p<0.05) in the 

heart tissue from 3.2±0.6 to 27.4±7.3 nmol/g with a p value = 0.0019. Lactate increased between 0 and 4 hours 

significantly (ANOVA p<0.05) in the liver tissue from 2.7 ±0.6 to 3.0±1.5 nmol/g and between 0 and 24 hours from 

2.7 ±0.6 to 20.7±5.2 nmol/g with a p value = 0.0016. Lactate increased between 0 and 24 hours significantly 

(ANOVA p<0.05) in the tail muscle tissue from 7.1 ±2.3 to 22.9±10.22 nmol/g with a p value = 0.010.  In all 
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tissues, HSP70 levels remained constant and were not significant during (ANOVA, p>0.05). In the heart and muscle 

tissues, AMPK activity remained constant and was not significant (ANOVA, p>0.05). In the liver, AMPK activity 

increased significantly (ANOVA, p<0.05) from 1.1±0.07 up to 1.3±0.2 between 0 and 4 hours and up to 2.1±0.1 

between 0 and 24 hours with a p-value = 0.0038. (mean±SE, n=5 per data point) 

 
 

Part 4 – 24 Hour Hypoxia Stress 

So far, the data clearly show that heat stress leads to anaerobiosis in the presence of 

adequate oxygen in the environment. Anaerobiosis in the tissues leads to diminished availability 

of ATP at the cellular level, which subsequently activates AMPK. In the next set of experiments, 

we tested whether we can elicit the same AMPK activation in a hypoxia environment at control 

temperatures. Therefore, we additionally tested the hypothesis that AMP-activated protein kinase 

(AMPK) is present and activated by hypoxia stress in the lobster, Homarus americanus. Lobsters 

were incubated at 5% oxygen (4 kPa) for 24 hours. We refrained from measuring the respective 

parameters in the muscle, as we saw no differences in AMPK activity in this tissue earlier and 

therefore wanted to focus on heart and liver. Heart rate (Figure 15) measured at two hour 

increments from 0 to 24 hours, did not increase significantly (ANOVA, p>0.05) during the 24 

hour heart rate experiment. During the same experimental parameters reaction time was recorded 

with the same methods as the above temperature data sets. The righting response did not vary 

throughout the 24 hour time course. 
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Figure 15: Reaction time, in the graph on the left, indicated that lobsters did not change in their ability to right 

themselves in the course of the experiment. The graph on the right shows the heart rate data collected for hypoxia 

stress. Heart rate did not significantly increase or decrease for the lobsters. (mean±SE, n=5 per data point) 

 

 

In the liver tissue, lactate concentration remained at low control levels between 0 and 4 

hours from 2.3±0.2 to 3.7±0.6 nmol/g protein. Lactate increased between 0 and 24 hours 

significantly (ANOVA p<0.05) in the heart tissue from 0.5±0.05 to 1.8±0.2 nmol/g and between 

0 and 4 hours 0.5±0.05 to 1.7±0.1 from with a p value = 0.0001 (Figure 16). Lactate increased 

between 0 and 24 hours significantly (ANOVA p<0.05) in the liver tissue from 2.3±0.2 to 

5.9±0.3 nmol/g and between 4 and 24 hours from 3.7±0.6 to 5.9±0.3 nmol/g with a p value = 

0.0005. In the heart and liver western blot analysis, HSP70 levels remained constant and did not 

significantly change during the temperature exposure (ANOVA, p>0.05). In the heart, AMPK 

activity increased significantly (ANOVA, p<0.05) from 1.0±0.05 up to 6.1±1.1 between 0 and 24 

hours and from 1.9±0.3 up to 6.1±1.1 between 4 and 24 hours with a p-value = 0.0021. In the 

liver, AMPK activity remained constant and was not significant during the temperature exposure.  

The data show that lobsters (Figure 16), during constant hypoxia stress, switch to 

anaerobic metabolism after four hours and activate AMPK as an earlier indicator of hypoxia 

stress than the well established response given by HSP70 expression in the heart tissue only. The 
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insignificant change in the AMPK activity of the liver can be explained by the variability of the 

data. An increased sample size for this experiment may prove to decrease the amount of 

deviation.  
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Figure 16: In the liver tissue, lactate concentration remained at low control levels between 0 and 4 hours from 

2.3±0.2 to 3.7±0.6 nmol/g protein. Lactate increased between 0 and 24 hours significantly (ANOVA p<0.05) in the 

heart tissue from 0.5±0.05 to 1.8±0.2 nmol/g and between 0 and 4 hours 0.5±0.05 to 1.7±0.1 from with a p value = 

0.0001. Lactate increased between 0 and 24 hours significantly (ANOVA p<0.05) in the liver tissue from 2.3±0.2 to 

5.9±0.3 nmol/g and between 4 and 24 hours from 3.7±0.6 to 5.9±0.3 nmol/g with a p value = 0.0005. In the heart 

and liver western blot analysis, HSP70 levels were not significant during the temperature exposure (ANOVA, 

p>0.05). In the heart, AMPK activity increased significantly (ANOVA, p<0.05) from 1.0±0.05 up to 6.1±1.1 

between 0 and 24 hours and from 1.9±0.3 up to 6.1±1.1 between 4 and 24 hours with a p-value = 0.0021. In the 

liver, AMPK activity remained constant and was not significant during the temperature exposure. (mean±SE, n=5 

per data point) 
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AMPK and HSP70  mRNA gene expression: 

As a fuel gauge, AMPK mRNA is expected to increase before animals surpass their temperature 

threshold and die. Since different tissues fulfill specific functions and have varying energy 

requirements, AMPK responses are expected to be much different within each tissue. The 

experiment below confirms this hypothesis in showing that in the heart AMPK mRNA 

expression resulted in a significant 20 fold increase during exposure to hypoxia (Figure 17). 

Significant increases were found between 0 and 24 hours significantly (ANOVA p<0.05) in the 

heart tissue from 2.2±0.6 to 40.1±8.7 and between 4 and 24 hours from 4.7±0.8 to 40.1±8.7 with 

a p value = 0.0017.  The liver AMPK mRNA expression shows an approximate 1000 fold 

increase but was found to be statistically insignificant (ANOVA p>0.05) due to high variability 

of the data. Up-regulation of HSP70 mRNA in the heart tissue and liver tissue were found to be 

statistically insignificant (ANOVA p>0.05).  
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Figure 17: Heart and Liver AMPK mRNA levels (top graphs)  show a 20 fold increase in AMPK expression in the 

heart tissue, while the liver AMPK mRNA expression resulted in about a 1000 fold increase. A 2 fold up-regulation 

of HSP70 mRNA was found in the heart tissue and a 30 fold up-regulation of HSP70 mRNA was found in the liver 

tissue. (mean±SE, n=5 per data point) 
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Part 5 – Anoxia Stress 

 In the hypoxia environment at control temperatures (Figure 18), AMPK activation and 

expression was only found to be significant in the heart tissue, showing that AMPK is an earlier 

indicator of hypoxia stress than the well established response given by HSP70. Because this 

activation was different than in the long and short term temperature experiments, we wanted to 

test oxygen deficiency on a more acute level. For anoxia exposure, lobsters were incubated at 

0.7% oxygen (0.3 kPa) for 2 hours. In the heart, HSP70 levels remained constant and did not 

significantly change during the anoxia exposure (ANOVA, p>0.05). AMPK activity increased 

significantly (ANOVA, p<0.05) from 1.0±0.05 up to 2.6±0.1 between 0 and 120 minutes, from 

1.3±0.1 up to 2.6±0.1 between 40 and 120 minutes, and from 1.4±0.3 up to 2.6±0.1 between 80 

and 120 minutes with a p < 0.0001. The data confirm our earlier findings for temperature and 

hypoxia, showing that AMPK is an earlier indicator of stress than the well established response 

given by HSP70 expression in the heart tissue. Analysis of the lobster anoxia liver tissue is still 

in progress. 

 

 
Figure 18: In the heart, HSP70 levels remained constant and did not significantly change during the anoxia 

exposure (ANOVA, p>0.05). AMPK activity increased significantly (ANOVA, p<0.05) from 1.0±0.05 up to 2.6±0.1 

between 0 and 120 minutes, from 1.3±0.1 up to 2.6±0.1 between 40 and 120 minutes, and from 1.4±0.3 up to 

2.6±0.1 between 80 and 120 minutes with a p < 0.0001. (mean±SE, n=5 per data point) 
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Part 6 – Comparison of AMPK activity during Temperature and Hypoxia on  

 

 To determine whether the activation of AMPK during the temperature-induced hypoxia is 

similar to the hypoxia induced by nitrogen bubbling, we correlated the lactate accumulation with 

the respective AMPK activity for each experiment. Assuming that lactate is a potential marker 

for the state of cellular energetics, lactate vs. AMPK activity was plotted in the graphs below 

(Figures 19). Curves were fitted with a hyperbolic function through the data to the equation 

y=aX/(b+X). The data show that in the heart and liver AMPK activity follow approximately the 

same trend during fast progressive and sub-lethal temperature stress. At the same time, AMPK 

activity increases at a faster rate during hypoxia exposure. This is most visible in the liver where 

the hypoxia induced AMPK activity reaches maximum at approximately 5 nmol lactate, while 

maximum AMPK activation is reached during temperature induced hypoxia at approximately 10 

nmol lactate. Therefore, AMPK is activated at a faster rate in hypoxia. The respective correlation 

was not completed for muscle tissue because heat stress did not activate AMPK. 
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Figure 19: This figure compares increases in both, lactate and AMPK activity levels in the heart and liver tissue for 

progressive temperature, constant temperature, hypoxia, and anoxia  stress. Curves were fitted with a hyperbolic 

function through the data, y=aX/(b+X) to show similarities or differences in trends. No valid fit could be found for 

hypoxia. The fast progressive temperature stress and the sub-lethal temperature stress followed a similar trend. 

At similar lactate concentrations AMPK activity increased at a faster rate during hypoxia and anoxia than during 

temperature-induced hypoxia. 
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DISCUSSION 

  This study investigates AMPK as a cellular marker for heat stress in the context of 

climate change. AMPK has been studied over the past years in the medical community especially 

in mammalian species in studies relating to obesity (Kola et al., 2008), heart failure (Hardie, 

2008), and diabetes (Kola et al., 2008). In each of the published studies different types of 

metabolic stress are investigated and cellular ATP homeostasis is disrupted. AMPK’s primary 

role in regulating cellular ATP quantities indicates that AMPK directly influences the 

physiological mechanisms of the diseases. A recent PubMed search revealed only 3 papers that 

focus on AMPK in crustacean species, including one on the rock crab, Cancer irroratus 

(Frederich et al. 2009) and the other two on the brine shrimp, Atremia franciscana (Zhu et al. 

2007, Zhu et al. 2009). The limited knowledge about the AMPK response specifically in marine 

crustacean species is a principal reason why this study was developed. In order to characterize 

the role of AMPK as a cellular signal for temperature and hypoxia stress, long-term and short-

term treatments were conducted with the lobster, Homarus americanus.  Parameters described 

above, such as AMPK mRNA expression, AMPK activity, heart rate, and lactate accumulation, 

were used to observe and determine the role of AMPK during specified stressors. Once 

determined, the AMPK mechanism and response to stress was compared to that of HSP70.  

 Several specific results were briefly discussed in the results section; the following focuses 

on the broader importance of AMPK in the lobster and other marine invertebrates. AMPK was 

found to be present and expressed in a tissue specific manner in the lobster, Homarus 

americanus. Each tissue was found to show varying levels of AMPK expression, being higher in 

the tail and cardiac muscle tissues, and lower in the brain and liver. In the fast progressive 

temperature experiments, sub-lethal temperature exposure, hypoxia experiment, and anoxia 

experiment, AMPK was activated as an earlier indicator for stress than the well established 
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HSP70 expression. Each experimental data set differed in AMPK tissue activation, showing that 

the AMPK response is not the same for each environmental stressor. AMPK activation 

significantly increased in all of the above, while HSP70 levels remained at a constant level. 

The sequencing of the AMPK gamma subunit in the lobster, Homarus americanus, had 

not been successfully completed prior to the beginning of this study. After the sequencing of the 

partial gamma AMPK 235 base pair sequence, it was aligned with the respective sequences of 

the rock crab, Cancer irroratus, the mouse, Mus musculus. High sequence conservation of the 

AMPK gamma sequence with other species of diverse phyla supports the assumption of AMPK 

as a general mechanism regulating cellular energy metabolism and shows that AMPK has been 

highly conserved throughout evolution. This conservation implies that the AMPK mechanism 

can be applied to many species and could predict the potential impacts of a specific stress on a 

species. 

Unlike a similar study on the rock crab (Frederich et al., 2009), this lobster study focused 

on the tissue specific AMPK activity patterns, because all earlier work investigated heart tissue 

only. Using the lobster as the focus organism, this project identifies that the mechanism 

described in the rock crab does not have a universal trend that is present in other species as well. 

This project was the first study that investigates whether AMPK activation by heat and hypoxia 

stress is tissue specific. Since thermal tolerance can often be modified through acclimation or 

acclimatization, it was important to study AMPK activity and gene expression throughout 

multiple organ systems. This more detailed and specified understanding of the cellular and 

molecular processes relating to temperature and hypoxia stress indicated that there was a 

significant tissue specific difference in how each organ system responds to temperature and 

hypoxia stress individuals. The heart’s primary role is to pump hemolymph throughout 
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crustaceans as a mechanism to keep the animals alive. Metabolically, as stress increases and 

transitions into moderate and lethal stress progress, the heart needs to apply mechanisms to 

provide a constant energy supply to itself in order to increase survivability. The liver is the 

largest and most active tissue because it regulates digestion, energy output, and energy storage. 

The liver’s response to unique stressors could indicate how animals adapt to stress 

physiologically, by shunting energy to particular organ systems; a process similar to a human’s 

sympathetic or parasympathetic response. Finally the tail muscle tissue is responsible for 

mobility and activity, particularly short bursts of activity during the escape response in the 

lobster. It is important to see how mobility and activity decrease as temperature and dissolved 

oxygen stress increase. This is the first advanced physiological understanding of the effects of 

how climate change and oxygen deficiency will affect energy regulation in an invertebrate 

species in a tissue specific manner.  

The ecological law of tolerance devised by Shelford, described a range of tolerance to 

environmental or chemical factors, such as temperature, ischemia, or pH (Shelford, 1913). The 

physiological tolerance range is divided into sections based on animal activity, survivability, and 

physiological adaptability. The midpoint of these two scales is the optimum performance range, 

an ideal range where the animal’s physiology can perform at its maximum level. When animals 

reach their upper and lower limits during exposure to an abiotic factor, their physiological 

processes worsen. A moderate amount of stress, a pejus range, is the physiological point where 

animals have limited aerobic activity. White the most severe stress range, a pessimum range, is 

considered to be lethal and extends beyond upper limits of survivability. The transition points 

between pejus and pessimum ranges can be labeled as critical temperatures, Tc. At Tc, marine 

invertebrates switch from aerobic to anaerobic metabolism despite sufficient levels of oxygen in 
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the environment and are indicated by the accumulation of a respective anaerobic end product. 

(first described by Zielinski and Pörtner 1996; for review see Pörtner 200l).  While in the 

presence of a temperature above or below the upper or lower Tc, respectively, marine 

invertebrates experience a mismatch between the oxygen supply present and the cellular demand 

needed. The relationship between oxygen availability to tissues and the demand for oxygen is 

important to understand the oxygen limitation of thermal tolerance (Frederich and Pörtner 2000).  

Shelford’s law of tolerance and critical temperatures can theoretically account for the 

activation of AMPK through thermal stress with the transition into a pejus range. The transition 

points between optimum and pejus ranges can be labeled as pejus temperatures, Tp (Frederich 

and Pörtner 2000). Within an upper or lower pejus range, survival is possible but only if 

performance is limited.  Specifically, AMPK activity is described as a cellular marker that 

indicates a Tp (Frederich et al. 2009). At Tp the animals leave their optimum range and enter a 

temperature range with a limited aerobic range for movement and physical activity. Under most 

circumstances the reduced amount of ATP during anaerobiosis is sufficient for an organism to 

survive for a short period of time, but is not enough for sustaining survival over an extended 

period of time due to cellular energy depletion and long-term lethal limits (Peck et al. 2002).  

The defined Tp is reached occasionally during annual water temperature fluctuations and has 

higher biological significance than the earlier described critical temperatures at which the 

animals switch to anaerobic metabolism The later switch to anaerobic metabolism can be 

connected with the time lag period that HSP70 needs in order to be induced for expression.   

The inability to adapt or remain physiologically stable has been directly connected to 

physiological system collapse in conjunction with an organism’s lethal temperature. This 

process, also known as acute thermal death, has been directly connected to cardiac failure or 
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denaturing proteins (Helmuth et al., 2010). Protein and gene expression are crucial mechanisms 

in setting thermal tolerance limits in ectotherms (Somero, 2010). For example, increase or 

decrease in body temperature based on environmental stressors directly impacts gene expression, 

leading to the activation of heat shock protein response (Helmuth et al., 2010). 

 Using the data from this study and comparable data from a parallel study, we can 

describe the connection between Shelford’s law and AMPK in three crustacean species, the 

green crab, Carcinus maenas, the rock crab, Cancer irroratus, and the lobster, Homarus 

americanus (Figure 20). The rock crab and the lobster both follow Shelford’s law in that as 

temperature increases to a defined Tp for each species, the rock crab and lobster both transition 

in to a pejus range, indicated by the increase in AMPK activity. In order to increase chances of 

survival and conserve cellular energy, these animals decrease their activity. As temperature 

increases further to Tc, animals transition into a pessimum range and eventually die. In a parallel 

study, the green crab was found to not have a pejus range. This intertidal animal has an extended 

optimum range that transitions into a pessimum range when temperature reaches Tc. The 

increased adaptability of this animal and the daily exposure to a wide variety of temperature 

variations are believe to account for this variation in the law of tolerance (See appendix for a 

manuscript that describes this mechanism in more detail. The manuscript combines data from an 

earlier publication (Frederich et al. 2009), from this thesis, and additional data on the green 

crab). 
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Figure 20: Shelford’s law of tolerance (1913)  with the more recently added thresholds, Tc and Tp. Tp is 

characterized by an increase in AMPK, Tc is characterized by the onset of anaerobic metabolism and increases in 

HSP70. Lobsters and rock crabs follow the sequence of optimum � pejus � pessimum range. Green crabs extend 

their optimum range and do not show AMPK activation by temperature stress. Green crabs transgress directly from 

an optimum to pessimum range, a potential adaptation to their highly instable habitat (see text and appendix for 

details). 

In the lobster, Homarus americanus, the anaerobic end-product is lactate. The transition 

from aerobic to anaerobic metabolism, shown by the accumulation of lactate as an end product in 

heart, liver and muscle, indicates the presence of severe temperature stress (Tc) within the 

lobster. During the switch to anaerobic metabolism, the concentration of lactate is expected to 

rapidly increase. This average stress threshold, also described as the pejus range, was seen 

between 28-30ºC with some variation among tissues. This range illustrates the upper limit for 

thermal tolerance within each specific tissue. Increased lactate concentration can be a direct 

marker for the upper thermal limit threshold of an organism and can be used to identify Tc.  

Additionally, lactate is a good tool when comparing the physiological processes of AMPK and 

HSP70 exposure to temperatures above the threshold leads to organ failure and eventually death. 

AMPK activation plays a vital role in maintaining energy homeostasis on a cellular level. 

The AMPK mechanism acts as an evolutionary adaptation for regulating and providing for the 
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increased energy requirements during temperature stress. The observed increases in AMPK 

activity of the fast progressive temperature experiments, specifically in the lobster heart and liver 

tissues, confirm this hypothesis. The constant AMPK activity in the muscle may be explained by 

the heat-induced torpor. The inactivity of the muscle tissue at higher temperatures suggests that 

since very little energy is required, AMPK activation does not occur.  

Similarly to AMPK, HSP70 is expected to increase in activation when animals are 

subjected to thermal stress. However, an increase in HSP70 was expected to occur much later 

than the increase of AMPK because of its mechanism of activation that requires gene 

transcription. Proteins denature due to the presence of heat and molecular chaperones assist in 

protein assembly by refolding denatured proteins (Hochachka & Somero, 2002) We found that 

the delay in detectable HSP level increases was so pronounced that when compared to AMPK 

activity, the increase was minimal or nonexistent. From the data gathered, HSP70 remains 

constant in the heart, liver, and muscle tissues of the lobster despite thermal stress. This confirms 

earlier studies completed with the rock crab, Cancer irroratus (Frederich et. al 2009), where it 

was shown that HSP70 does not increase in the heart during a fast, progressive temperature 

increase. Therefore, HSP70 is not a reliable indicator for acute thermal stress in crustaceans. 

The 24 hour sub-lethal temperature experiment was designed to test the animal’s 

physiological limits at a temperature within their upper pejus range, a study that has not been 

previously completed. A temperature of 26°C was selected for this study as it represented a 

temperature that was just below the complete metabolic switch from aerobic to anaerobic 

metabolism. The data show that lobsters switch to anaerobic metabolism after four hours at 30°C 

for each tissue. AMPK activation was found to significantly increase and was an earlier indicator 

of heat stress than the well established response given by HSP70 expression in the liver tissue 
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only. This tissue is thought to be the most active during this time point because it is contains 

many metabolic functions and physically consumes a large portion of the lobster’s thorax. The 

increase of AMPK activity of the heart was found to be statistically insignificant. Since the 

lobsters were not having a continuous increase in temperature, they were able to adapt more 

readily to the constant temperature in the heart tissue specifically. The constant AMPK activity 

again in the muscle may be explained by the heat-induced torpor. To conclude, AMPK was 

found to be a faster and more reliable indicator for constant thermal stress in the liver tissue, 

while HSP70 remained unreliable and not significant. The activation in the liver tissue alone 

shows unique stressors have a greater impact on specific tissues depending on how the animals 

adapt to the stress. 

When looking at the fast progressive temperature study and the sub-lethal temperature 

study, we see that the AMPK activation and increase is transient. In the fast progressive 

experiments, AMPK is activated in the heart and liver, two highly metabolic tissues. The lack of 

activity in the muscle tissue can be related to the reduced activity affects of Tp/Tc. In the sub-

lethal temperature experiments, AMPK activation was not seen to be as significant in the heart 

tissue, mostly because animals were given enough time to adapt to the moderately stressful 

temperature of 28°C. The liver tissue had a significant increase in AMPK activity, again, because 

of its regulatory properties in energy storage and consumption during pejus range temperatures. 

HSP70 levels did not significantly increase either of the experiments. Many studies have 

discussed how HSP will elicit an increase but only after animals are returned to control 

conditions, allowing enough time for new HSPs to be transcribed (Tomanek et al. 2010 and 

Hoffmann et al. 2003). 
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 Together, both temperature experiments show that AMPK is activated immediately 

during heat stress, but does not remain activated for an extended period of time, as shown in the 

long term temperature exposure. Initially, the AMPK mechanism may provide sufficient ATP, 

however, this will change once the cell reaches a new balanced state. Accumulation of HSP70 

after the return to control conditions from an original heat stress seems to have a longer lasting 

impact on the cellular level. However, this up regulation occurs only after the return to control 

level from the initial stress. Therefore, our goal to identify a faster marker for cellular stress was 

achieved only for immediate stress. Using AMPK and HSP70 together could potentially help 

assess stress levels and the duration of the stress that an organism was exposed to. If AMPK 

activity increases, then the stress response happened immediately, and, if HSP70 is up-regulated, 

then stress was present but may have passed already. Before this methodology can be used, a 

standard must be determined.  

Similarly to the sub-lethal temperature stress, hypoxia stress was measured over a 24 

hour period under control temperatures and AMPK activity and HSP70 expression were 

compared at certain time increments. The data show that lobsters switch from aerobic to 

anaerobic metabolism after 4 hours. AMPK activation was found to significantly increase and 

was an earlier indicator of stress than the well established response given by HSP70 expression 

in the heart tissue only. The insignificant change in the AMPK activity of the liver can only be 

explained by statistical analysis. An increased sample size for this experiment may prove to 

decrease the amount of deviation.  

In order to understand the impact that hypoxia stress has upon Homarus americanus, 

tissue analyses measuring AMPK activation and levels of mRNA expression was performed at 

varying time increments based upon physiological importance. The short term responses, 
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specific to daily oxygen concentration changes within the environment, represented the rapid 

biochemical process where AMPK activation is measured by the amount of phosphorylation of 

the gamma subunit. Long term responses are more specific to seasonal changes within the 

environment and can be experimentally measured using genetic processes where AMPK mRNA 

expression levels are quantified. AMPK results were compared to HSP70 protein and mRNA 

levels for the 24 hour response to hypoxia stress. Heart and Liver AMPK mRNA levels showed 

an extremely significant increase in AMPK expression in the heart and liver tissues. HSP70 

mRNA levels were not significant, therefore confirming again that AMPK is a faster and more 

reliable mechanism for cellular stress response. 

To test oxygen deficiency on a more acute level, lobsters were incubated at 0.7% oxygen 

(0.3 kPa) for 2 hours. In the heart western blot analysis, HSP70 levels remained constant and did 

not significantly change during the temperature exposure (ANOVA, p>0.05). In the heart, 

AMPK activity increased significantly against all data points up to 120 minutes. So far, the data 

show that lobsters, during acute anoxia stress, activate AMPK as an earlier indicator of anoxia 

stress than the well established response given by HSP70 expression in the heart tissue. Further 

analysis will help us to compare further hypoxia and acute anoxia AMPK activation with the 

transition to anaerobiosis during fast progressive and sub-lethal temperature stress. 

 Correlating lactate concentration and AMPK activity during both temperature 

experiments and the hypoxia incubation revealed a hyperbolic correlation for heart and liver 

tissue. Interestingly enough, the fitted curves for progressive temperature and for constant sub-

lethal temperature exposure increase similarly. We expected that temperature stress would create 

a compromised energy metabolism with subsequent lactate accumulation.  It was also anticipated 

that the increased ATP hydrolysis rate would lead to an increased AMP concentration, which 
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activates AMPK.  Measuring AMP concentrations is difficult because most cellular AMP is 

bound to proteins. The AMP concentration needed is that of free AMP, which works to activate 

AMPK. Total AMP measurements often overestimate the amount of free AMP by an order of 

magnitude. The only way to reliably calculate free AMP concentrations is  to use NMR 

spectroscopy (Frederich et al. 2005). Instead of measuring AMP, we use lactate as a crude 

indicator of the metabolic state. Although we are using lactate concentrations as a measure of 

metabolic transition, we are not suggesting that lactate directly activates AMPK. 

It was most surprising to find that at matching lactate levels, AMPK activity increased at 

a much faster rate for nitrogen induced hypoxia than during temperature-induced hypoxia. This 

finding suggests that during hypoxia AMPK is activated faster than during temperature stress, 

signifying two separate mechanisms of AMPK activation. A similar study shows similar results 

for rat heart tissues (Frederich et al. 2005). In that study, nitrogen induced hypoxia and a 

chemical induced hypoxia caused by inhibition of the Citric acid cycle through inhibitors led to 

AMPK activation at different rates. As a result, a difference in the AMPK activating mechanism 

was proposed. The nature of the two different mechanisms remains indefinable but highlights the 

complexity of the involved regulatory pathways. 

   

CONCLUSION 

 In conclusion, the effects of climate change, whether it’s in dissolved oxygen 

concentration or water temperature fluctuations, can be seen to have a drastic impact on marine 

animals if  water temperature highs increase and if dissolved oxygen levels decrease. To assess 

these impacts it would be helpful to have a cellular parameter that provides a snap shot of the 

stress level of an organism; AMPK has the potential to be that cellular marker. This is the first 
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study that investigates the effects of temperature and hypoxia stress on AMPK activity in any 

animal on a tissue specific level. A fast, progressive temperature increase shows three different 

rates of AMPK activation in the heart, liver and muscle tissues; the AMPK activation in the heart 

and muscle tissues is seen well before the heat shock response (HSP70) can be seen. The sub-

lethal temperature increase again, showed a tissue specific activation of AMPK as an earlier 

indicator of temperature stress than HSP70 but only in the liver tissue. The increase in AMPK 

activity as temperature increases can be directly related to the survivability, responsiveness, and 

physical activity of the animal during temperature conditions in the environment. Similarly, the 

hypoxia response showed a tissue specific significant increase in AMPK activity for the heart 

tissue only but an increase in AMPK expression for both the heart and liver tissues. This 

activation of AMPK occurred again before the heat shock response. Furthermore, AMPK 

activation is transient and as a result independent of the stressor. Therefore, we conclude that 

AMPK is a better cellular marker for heat stress in the lobster, Homarus americanus, and occurs 

in a tissue specific manner. Rates of AMPK activation during temperature and hypoxia stress are 

different, indicating that there are potentially two mechanisms for activating AMPK. The details 

of this difference in activation remain to be elucidated.  
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