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Abstract: Direct pulp capping helps extend the life 
of a diseased tooth by maintaining tooth vitality. 
Nowadays, lasers are more frequently used during 
direct pulp capping in the clinic, but their use has 
not been previously reviewed. This review presents 
the basic properties of currently available lasers, 
scientific evidence on the effects of laser application 
on direct pulp capping, and future directions for 
this technology. An extensive literature search was 
conducted in various databases for articles published 
up to January 2015. Original in vitro, in vivo, and 
clinical studies, reviews, and book chapters published 
in English were included. Various laser systems have 
been increasingly and successfully applied in direct 
pulp capping. Lasers offer excellent characteristics 
in terms of hemostasis and decontamination for field 
preparation during direct pulp capping treatment; 
however, the sealing of exposed pulp with one of the 
dental materials, such as calcium hydroxide, mineral 
trioxide aggregates, and bonded composite resins, is 
still required after laser treatment. Clinicians should 
consider the characteristics of each wavelength, the 
emission mode, irradiation exposure time, power, 
type of laser tip, and the distance between the laser 
tip and the surface being irradiated.
(J Oral Sci 57, 277-286, 2015)

Keywords: direct pulp capping; lasers; CO2 laser; 
Nd:YAG laser; diode laser; Er:YAG laser; 
Er,Cr:YSGG laser.

Introduction
The three main causes of pulp exposure are caries, 
mechanical factors, and trauma (accidents). Direct 
pulp capping with a dental material, such as calcium 
hydroxide or calcium-hydroxide-based cements (1-11), 
mineral trioxide aggregate (12-21), and adhesive 
resins (22-28), is one way of treating the exposed vital 
pulp. This method is normally performed in case of 
mechanical or traumatic vital pulp exposure, as carious 
pulp exposure may be infected with bacteria from 
the carious lesion and may lead to pulp inflammation 
(29,30). This method involves two treatment steps: the 
first step involves preparation (often through hemostasis 
and decontamination) of the exposed pulp tissue and the 
surrounding dentin, whereas the second step consists of 
sealing the exposed pulp with one of the aforementioned 
dental materials so as to prevent bacterial penetration 
and achieve closure by means of calcified tissue forma-
tion. Direct pulp capping is advantageous for extending 
tooth life by maintaining tooth vitality as the direct pulp 
capping material facilitates the formation of reparative 
dentin from odontoblasts (31-33) and the maintenance of 
vital pulp (34-36). In particular, this technique may be 
helpful for the treatment of small carious lesions (37) or 
pulp exposures in young teeth with open apices (19) as 
it allows the remaining pulp to stay vital and supports 
continuous root development.

According to the American Association of Endo-
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dontists’ (AAE) Guide to Clinical Endodontics, the 
indications for direct pulp capping are as follows: 1) 
occurrence of mechanical exposure of a clinically vital 
and asymptomatic pulp; 2) controlled bleeding at the 
exposure site; 3) possibility of direct contact of the 
capping material with the vital pulp tissue after exposure; 
4) occurrence of exposure during dental dam isolation 
of the tooth; 5) maintenance of adequate seal of the 
coronal restoration; and 6) indication of a possible future 
endodontic treatment to the patient.

Recently, lasers have been used in various endodontic 
situations (38-43). Due to their excellent results for 
hemostasis and decontamination (40,44), lasers have 
grown in popularity for direct pulp capping in the clinic. 
However, the results of their use have not been previously 
reviewed. Therefore, this review presents the basic prop-
erties of currently available lasers, scientific evidences 
on the effects of laser application on direct pulp capping, 
and the future directions for this technology. 

An extensive literature search was conducted in the 
PubMed/Medline, Web of Science, and Cochrane data-
bases for publications up to January 2015 using keywords 
such as Lasers, Direct pulp capping, CO2 laser, Nd:YAG 
laser, Diode laser, Er:YAG laser, and Er,Cr:YSGG laser. 
Additionally, a thorough manual search was performed 
based on the reference lists of relevant articles. Original 
in vitro, in vivo, and clinical studies, reviews, and book 
chapters in English language publications were included. 
Conference papers and abstracts were excluded.

Historical background of the use of lasers 
in dentistry

LASER (Light Amplification by Stimulated Emission 
of Radiation) is essentially a man-made single-photon 
wavelength. Lasing is defined as a process wherein an 
atom is excited and stimulated to emit a photon before 
the process can occur spontaneously (44). This stimu-
lated emission generates coherent (synchronous waves), 

monochromatic (a single wavelength), and collimated 
forms (parallel rays) of light. Thus, lasers can effectively 
concentrate light energy on the target tissue at an energy 
level much lower than that of natural light. As a result 
of their photo-physical characteristics, laser irradiation 
offers strong ablation (44,45), hemostasis (44), detoxi-
fication (removal/ablation of toxic substances) (44), 
bactericidal effects (44,46), and biostimulatory effects 
on biological tissues (44,45) (Table 1).

Investigation of dental lasers began as early as the 
1960s. The first laser, a ruby laser, was constructed in 
1960 by Maiman (47). The first continuously generating 
laser was a low-powered helium and neon (He-Ne) laser 
developed by Javan et al. in 1961 (48), while an Nd:YAG 
laser was demonstrated for the first time by Geusic et al. at 
Bell Laboratories in 1964 (49). In 1965, Stern and Sogn-
naes used the ruby laser to vaporize enamel and dentin 
(50). After these initial studies with ruby lasers, several 
other types of lasers appeared including argon (Ar), 
carbon dioxide (CO2), neodymium: yttrium-aluminum-
garnet (Nd:YAG), erbium (Er):YAG, erbium, chromium: 
yttrium-scandium-gallium garnet (Er,Cr:YSGG) laser, 
and diode lasers (45). In 1971, Weichman and Johnson 
used a high-powered infrared (CO2) laser for the first 
time in endodontics to seal the apical foramen in vitro 
(51). Subsequently, attempts were made to seal the apical 
foramen using the help of the Nd:YAG laser (42,52). 
Of the available lasers, CO2, Nd:YAG, Er:YAG, and 
Er,Cr:YSGG are basically middle- to high-power lasers, 
while diode lasers have a wide energy emission range 
and can be used as low- or middle- to high-power lasers, 
depending on the energy level emitted. 

Basic properties of carbon dioxide (CO2), 
Nd:YAG, Er:YAG, Er,Cr:YSGG, 

and diode lasers
The characteristics of a laser depend on its wavelength. 
For example, the wavelength of a CO2 laser is 10,600 nm 

Table 1   Laser-tissue interaction of each wavelength

Laser type Wavelength Color Soft tissue 
ablation Coagulation Carbonization Hemostasis Bacterial 

killing
Hard tissue 

ablation Biostimulation

Diode; Gallium Aluminum 
Arsenide (GaAlAs) 670-830 nm Red-infrared + ++ + ++ + - ++

Diode; Indium Gallium Arsenide 
(InGaAs) 980 nm Infrared + ++ + ++ + - ++

Neodymium:YAG (Nd:YAG) 1,064 nm Infrared + ++ + ++ + - ++
Erbium, chromium:YSGG 
(Er,Cr:YSGG) 2,780 nm Infrared ++ +/- +/- + + ++ +

Erbium:YAG (Er:YAG) 2,936 nm Infrared ++ +/- +/- + + ++ +
Carbon Dioxide (CO2) 10,600 nm Infrared ++ + ++ ++ + - +
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and is emitted in a continuous or gated pulsed mode. This 
is one of the most popular lasers for soft-tissue surgery 
and generally utilizes an articulated arm system with 
mirrors. Therefore, it is sometimes difficult to use this 
system in certain sections of the oral cavity such as root 
canals and periodontal pockets. However, the CO2 laser 
wavelength is easily absorbed by water, which enhances 
its benefits for soft-tissue procedures. There is less 
carbonization or heat penetration on the surface when a 
substance being lased by CO2 contains water, whereas 
carbonization and crack formations occur readily on the 
surface if it does not contain much water (e.g., dentin and 
enamel). An emission wavelength of 9,600 nm for the 
CO2 laser is reported to be absorbed by hydroxyapatite 
crystals in enamel and dentin, causing tissue ablation, 
melting, and resolidification of tissues in the dental pulp 
in both humans (53) and dogs (54).

With a wavelength of 1,064 nm, the Nd:YAG laser 
can emit a high-energy free-running pulse. The infrared 
light of this laser is typically directed through optical 
fibers, the end of which is used for contact irradiation 
with a handpiece. The Nd:YAG laser originally oper-
ated in a continuous-wave mode, the current Nd:YAG 
laser systems have adopted a free-running pulsed mode 
(45,55). Several researchers have investigated various 
diameters of optical fibers used in medicine (56), and have 
manipulated their tips for effective irradiation (57-59). 
In dentistry, Nd:YAG lasers are indicated for soft-tissue 
surgeries such as gingivectomy, periodontal sulcular 
debridement, laser-assisted new attachment procedures 
(LANAP), frenectomy, biopsy, and coagulation of graft 
donor sites (57,60,61). These lasers are contra-indicated 
for peri-implant procedures as they easily cause melting 
of the titanium surfaces of dental implants (62). As the 
laser light of Nd:YAG lasers is selectively absorbed 
by dark colors, clinicians frequently paint a coating of 
black dye or paste on the target area before exposing it 
to the laser in order to enhance the absorption The use of 
titanium dioxide (TiO2) pigment as an alternative to the 
black dye has also been historically studied (63). 

The Er:YAG laser emits infrared light at a wavelength 
of 2,936 nm in a free-running pulsed mode. This laser 
utilizes fiber-optic or hollow wave-guiding delivery and 
a contact irradiation system with various kinds of contact 
tips mounted on a handpiece. Unlike the Nd:YAG and 
diode lasers, the wavelength of the Er:YAG laser is more 
easily absorbed by water compared to other currently 
available dental lasers due to its atomic resonance. The 
absorption coefficient of water under Er:YAG laser 
irradiation is theoretically 10 times higher than that with 
a CO2 laser and 15,000−20,000 times higher than that 

with an Nd:YAG laser (64). This laser energy is absorbed 
selectively by the water molecules and hydrous organic 
components in biological tissues, causing photothermal 
evaporation and, subsequently, thermal effects. In hard 
tissues, the water vapor production increases the tissues’ 
internal pressure causing a “microexplosion” (65,66). 
The mechanical tissue collapses, resulting in “thermome-
chanical” or “photomechanical” ablation. In addition to 
water, hydroxyapatite can also absorb the Er:YAG laser 
relatively efficiently, a characteristic that is helpful for 
cutting hard tissues such as teeth (65,66) and bone (67). 
In contrast, the CO2 laser is more highly absorbed by the 
phosphate mineral, but it cannot ablate hard tissue (44). 
Thus, the Er:YAG laser has an excellent capacity for 
ablating both soft and hard tissues with minimal thermal 
side-effects. It has been applied for bone surgery in oral 
surgery, dentistry, implant dentistry, and otolaryngology 
(68-71). The Erbium, Chromium: Yttrium-Scandium-
Gallium Garnet (Er,Cr:YSGG) laser has a 2,780 nm 
wavelength, which is more highly absorbed by OH ions 
than by water molecules (72) and performs in a manner 
similar to the Er:YAG laser.

Diode lasers use nearly microscopic semiconductor 
chips to generate coherent light in a very small package. 
The mechanism of laser action is based on the differences 
in energy levels between the conduction and valence 
band electrons in these semiconductors. The diode laser 
wavelength is defined by the composition of the base 
compound. The most widely used lasers in this family 
are the gallium-aluminum-arsenide (GaAlAs) laser (810 
nm) and indium-gallium-arsenide (InGaAs) laser (980 
nm). Diode lasers operate in continuous and/or gated 
pulsed modes, and generally utilize fiber-optic delivery 
where the ends of the optical fibers are used for contact 
irradiation through a handpiece. There are only a few 
devices that contain a contact irradiation system with 
various kinds of contact tips mounted on a handpiece. 
Diode lasers are very effective in soft-tissue applications, 
offering excellent incision, hemostasis, and coagulation 
with a relatively high penetration depth into biological 
tissues (73). Moreover, they save space and cost less than 
other laser systems. 

Research review of lasers used for direct 
pulp capping

Carbon dioxide (CO2) lasers
In vitro/animal studies: In 1985, Melcer et al. (74) reported 
that a CO2 laser produced newly mineralized dentin 
formation without cellular modification of the pulpal 
tissue when tooth cavities were irradiated in beagles 
and primates. Two years later, these investigators (75) 
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utilized the CO2 laser to treat exposed pulp tissues, thus 
achieving hemostasis in beagles and monkeys/primates. 
This procedure was performed by exposing the dentin 
to an energy density of 2 × 103 J/cm2, after which the 
first cell layers of the pulp tissue showed rarefaction and 
cellular degeneration. After three months, neo-formation 
of approximately 300-μm-thick calcified dentin was 
observed, perhaps due to excitation of the odontoblasts 
or the production of pulpal cells that had functioned 
previously. When an energy density of 103 J/cm2 was 
applied to the pulp, partial necrosis led, within a month, 
to various inflammatory aspects and to a quasi-constant 
regeneration by formation of a 200-μm-thick neo-dentin 
bridge. Less favorable results were reported by Suzuki et 
al. (76) in a study examining direct pulp capping in rats, 
which showed that CO2 laser irradiation (0.5 W at 3 s) 
was effective for field control. However, the CO2 laser 
group showed a very irregular fibrous dentin matrix in 
the vicinity of the denatured and carbonized tissue, and 
definite reparative dentin was not formed. According to 
Anic et al., CO2 laser should generally be used at less 
than 1 W for <1 s under anesthesia and cooling air during 
irradiation of dental pulp tissue (77).

Clinical studies: Moritz et al. (78) used a CO2 laser for 
direct pulp capping in their clinical trial, and compared 
the results with those achieved with calcium hydroxide. 
In the experimental group, an energy level of 1 W with 
0.1-second exposure time and 1-second pulse intervals 
was applied until the exposed pulps were completely 
coagulated. The caps were then dressed with calcium 
hydroxide (Life: Kerr, Orange, CA, USA). In the 
control group, the pulps were capped only with calcium 
hydroxide. Thermal tests were used for vitality assess-
ment, and the laser Doppler technique was used for direct 
measurement of the pulpal blood flow. The last recall 
examination at 12 months demonstrated a success rate of 
89% in the experimental group, while the control group 
exhibited a considerably lower success rate of 68%. 
Thus, the authors reported positive results following 
laser-assisted pulp capping (78,79). 

Nd:YAG lasers
Clinical studies: Using human primary teeth, Odabas et al. 
(80) compared the clinical, radiographic, and histopatho-
logic effects of Nd:YAG laser (2 W, 20 Hz) pulpotomy 
with those of formocresol pulpotomy. Although the teeth 
in the formocresol group exhibited a slightly higher 
percentage of clinical and radiographic success at 12 
months, there were no statistically significant differences 
between the groups. Santucci (81) examined the efficacy 

of laser-assisted direct pulp capping by comparing the 
survival rates of permanent teeth treated with Nd:YAG 
laser (1.75 W, 20 pps, 20 s) and Vitrebond (3M, St. Paul, 
MN, USA) direct pulp caps to those of permanent teeth 
treated with the traditional calcium hydroxide direct 
pulp cap, Dycal (LD Caulk, Milford, CT, USA), over 
intervals of up to 54 months. The cumulative proportion 
of teeth surviving post-operatively in the Dycal direct 
pulp cap group was 89.7% at 1 month, decreased to 
79.4% at 3 months, 76% at 6 months, and a mere 43.6% 
at 54 months. In contrast, the laser and Vitrebond direct 
pulp cap maintained much higher survival percentages 
of 98.4% after 1 month, 93.8% at 3 months, 90.3% at 
6 months, and 90.3% after 54 months. Therefore, the 
pulpal response after 6 months as well as the survival 
rate of teeth from 9 to 54 months was significantly higher 
in the laser and Vitrebond direct pulp cap group. The 
authors speculated that this success was likely due to the 
aforementioned advantages of lasers, including forma-
tion of homogeneous reparative dentin at a faster rate. 

Er:YAG lasers
Animal studies: Hasheminia et al. (82) investigated the 
effect of Er:YAG laser (200 mJ/pulse, 5 Hz, 15 s) on 
the pulp capping of mechanically exposed cat canines 
and found that the ‘laser plus MTA’ group showed little 
improvement compared with the MTA-alone and the 
‘laser plus calcium hydroxide’ groups. Jayawardena et al. 
(83) verified the healing capacity of the pulp by demon-
strating formation of dentin bridges after pulpal exposure 
with the Er:YAG laser (150 mJ/pulse, 10 pulses) in rats. 
Wigdor et al. (84) noticed reparative dentin formation 
after 4 days in dog teeth. Keller and Hibst (85) reported 
that neo-formation of calcified dentin was observed at 6 
and 8 weeks after Er:YAG laser irradiation (150-300 mJ/
pulse, 50 pulses) in dog tooth pulp. However, based on 
the authors’ collective experiences, this parameter is not 
recommended for the treatment of human teeth in clinical 
settings.

Clinical studies: Olivi et al. (86) used an Er:YAG laser (25 
mJ/pulse, 20 pps, 10 s) and reported more positive results 
in two groups of patients with decayed permanent teeth: 
a child group aged between 11 and 18 years (average: 
14.5 years), and an adult group aged between 19 and 
40 years (average: 27.1 years). A four-year follow-up 
showed a success rate of 63% in the child group and 50% 
in the adult group with calcium hydroxide, equal percent-
ages (80%) in both groups with Er,Cr:YSGG laser, and 
75% in the child group and 70% in the adult group with 
the Er:YAG laser. These results demonstrated that laser 
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technology has been proven effective in improving the 
prognosis of pulp capping. With regard to dentin forma-
tion, Huth et al. (87) conducted Er:YAG laser pulpotomy 
(180 mJ/pulse, 2 Hz, approximately 32 pulses) in human 
primary molar teeth, and obtained clinical success rates 
of 98% and 93% in 12 and 24 months after treatment, 
respectively.

Er,Cr:YSGG lasers
Animal studies: Toomarian used the Er,Cr:YSGG laser 
(25 mJ/pulse, 0.5 W, 20 Hz) for pulpotomy in the teeth 
of dogs and observed no clinical, pathological, or radio-
graphic findings (88). 

Clinical studies: Olivi et al. studied the use of a 2,780-nm 
Er,Cr:YSGG laser (0.5 W, 20 pps, 10 s) combined with a 
self-setting base with calcium hydroxide for direct pulp 
capping in patients and reported a success rate of 80% in 
four years (86,89). Blanken et al. studied 9 vital human 
teeth displaying deep carious lesions that were treated 
with an Er,Cr:YSGG laser (0.25–0.5 W), pulp-capped 
with a modified glass-ionomer cement (Vitrebond), and 
permanently restored with Cavex Clearfil APX (Kuraray, 
Tokyo, Japan). Clinical and radiographic evaluation 
conducted 3 to 8 months after treatment showed no 
clinical signs of inflammation, and the vitality tests were 
positive in eight cases (90). 

Diode lasers
Animal studies: Yilmaz et al. reported that diode laser 
irradiation (0.7-W output power) of the pulpal chamber 
of extracted human primary first molars did not cause 
injurious temperature increases (91).

Clinical studies: Yazdanfar et al. compared the effec-
tiveness of conventional [resin-modified glass-ionomer 
cement (Vitrebond) light-hardening paste alone] and 
diode-laser-assisted (808 nm, 5 W, continuous wave for 
2 s per 1 mm) methods in direct pulp capping of carious 
teeth in ten patients from ages 12 to 40 years (92). The 
one-year success rate in the diode-laser-assisted group 
(100%) was significantly better than that of the conven-
tional group (60%) in this pilot study. 

Current clinical procedures for use of 
lasers in direct pulp capping: 

treatment steps including advantages 
and disadvantages of lasers

According to endodontic textbooks, uses of a laser for 
direct pulp capping are extremely limited (52). The best 
current evidence in the literature for the clinical use of 

different types of lasers is summarized in Table 2 and 
Fig. 1, and describes the practical applications along 
with academic commentary. This will be particularly 
useful for dental students, post-graduate residents, and 
practitioners.

Table 2 summarizes the types of lasers, parameters, 
indications, advantages, and disadvantages, together 
with the best current evidence in the literature. The use of 
lasers for direct pulp capping shows great promise with 
respect to clinical and basic sciences because of their 
versatility and wide applicability. However, dental lasers 
must be studied and practiced sufficiently before they can 
be routinely applied in the clinic. 

Figure 1 is a summary of clinical procedures for direct 
pulp capping with lasers, based on authors’ collective 
experiences, and illustrates the steps of the treatment. 
First, careful clinical examination, including a pulp 
vitality test, is critical to establish a diagnosis. If the 
diagnosis requires direct pulp capping treatment, local 
anesthesia is administered to the tooth and a rubber 
dam is used. The next step is preparation of the dentin 
surrounding the exposed pulp and complete removal 
of all softened, carious dentin by means of a high- and 
low-speed handpiece and/or hand instruments. This must 
be performed with care to avoid excessive injury to the 
exposed pulp tissue (Fig. 1A). Depending on the situa-
tion, the use of Er:YAG or Er,Cr:YSGG lasers in addition 
to mechanical treatment may be helpful for hard-tissue 
preparation as the laser can ablate carious dentin without 
direct contact (93). Therefore, laser treatment minimizes 
the mechanical damage to the exposed pulp tissue. 

Following preparation of the surrounding dentin, 
hemostasis and decontamination of the exposed pulp 
tissue are performed, and the major laser usage occurs 
at this stage (Fig. 1B). Traditional methods for hemo-
stasis and decontamination include copious irrigation 
with NaOCl and topical application of Ca(OH)2 if the 
hemorrhage is minimal, and topical application of ferric 
sulfate if the hemorrhage is significant (94). Compressed 
application of a formocresol-medicated cotton pellet is 
then performed at the area of hemorrhage. However, the 
clinical time spent and the treatment outcomes with these 
traditional methods are uncertain and technique-sensitive 
(81). In contrast, there are two major advantages (hemo-
stasis and decontamination) to be considered if a laser is 
used for direct pulp capping procedures. Laser treatment 
for hemostasis and decontamination is easy to accom-
plish and less technically demanding as it can achieve 
the treatment goal without coming into contact with the 
hemorrhage site, and also sterilize the exposed site and 
its surrounding area simultaneously. In the non-contact 
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mode, CO2 laser has the ability to stop blood flow easily 
during hemostasis as it can seal small blood vessels by 
thermal coagulation of the soft tissue (95,96). In the case 
of Nd:YAG laser, dye must be applied to the treated pulp 
surface except when resin filling is indicated in an ante-

rior tooth (86). The Er:YAG laser lacks sufficient ability 
to achieve complete hemostasis because its thermal effect 
is extremely low (86). However, even if hemostasis is 
not achieved, the conventional procedure following laser 
treatment controls bleeding more easily after irradiation 

Table 2   Lasers used for direct pulp-capping
Wavelength Power Time Indication Waveform Advantages Disadvantages References

CO2 10,600 nm 0.5 - 1 W 
Continuous wave 
and pulsed

0.5 - 3 s Soft tissue Continuous 
and/or gated 
pulsed mode

Strong hemostasis 
Decontamination 
Photobiomodulation 
Less expensive

Major thermal change
(carbonization and strong 
coagulation)
Not able to be guided by 
optical fibers
Large-sized device

Melcer et al. (74)
Suzuki et al. (76)
Anic et al. (77)
Moritz et al. (78, 79)

Nd:YAG  1,064 nm 1.75 - 2 W 
20 pps

0.5 - 20 s Soft tissue Free-running 
pulsed mode

Strong hemostasis
Decontamination
Photobiomodulation 
Fiber-optic or hollow-wave-
guiding delivery

Major thermal change
(carbonization and strong 
coagulation)
Expensive and large-sized 
device

Anic et al. (77)
Odabas et al. (80)
Santucci (81)

Er:YAG  2,936 nm 25 - 200 mJ/
pulse
2 - 20 pps

5 - 15 s Soft & hard 
tissue

Free-running 
pulsed mode

Low to moderate hemostasis
Decontamination
Photobiomodulation 
Minimal thermal change (slight 
coagulation)
Fiber-optic delivery

Expensive and large-sized 
device

Hasheminia et al. (82)
Jayawardena et al. (83)
Wigdor et al. (84)
Olivi et al. (86)
Huth et al. (87)

Er,Cr:YSGG  2,780 nm 0.25 - 0.5 W 
(25 mJ/pulse, 
10 - 20 pps)

5 - 15 s Soft & hard 
tissue

Free-running 
pulsed mode

Low to moderate hemostasis
Decontamination
Photobiomodulation
Minimal thermal change (slight 
coagulation)
Fiber-optic delivery

Expensive and large-sized 
device

Olivi et al. (86, 89)
Toomarian et al. (88)
Blanken et al. (90)

Diode 810-980 nm 0.7 - 5 W 
Continuous wave

1 - 2 s Soft tissue Continuous 
and/or gated 
pulsed mode

Strong hemostasis
Decontamination
Photobiomodulation
Wide selections of optical fibers 
Less expensive and small-sized 
device 
Fiber-optic delivery

Major thermal change 
(carbonization and strong 
coagulation)

Yilmaz et al. (91)
Yazdanfar et al. (92)

Fig. 1   Treatment steps of direct pulp capping using lasers. (A) Exposure of vital pulp. (B) Hemostasis 
and decontamination of the exposed pulp tissue using lasers. (C) After laser application and hemostasis 
establishment, filling material will be applied. (D) Dentin bridge formation.
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compared to cases in which irradiation is not performed 
(86). The hemostatic effect of diode laser is due to 
significant absorption of laser light by hemoglobin and 
melanin, which ensures that the treated area dries within 
the least possible time. It also provides deeper penetra-
tion. The fine area of hemostasis created by this laser 
includes a thin layer of necrosis, below which there is 
an area where the injury can be reversed, i.e., a place for 
migration of inflammatory cells and the fibroblasts that 
contribute to the formation of the dentinal bridge (86). 

In addition to hemostasis, lasers can treat the exposed 
pulp surface without direct contact. Therefore, the treated 
wound surface remains sterile, further strengthening the 
stringent asepsis in combination with dental dam isola-
tion. However, there are some disadvantages of using 
lasers on an exposed pulp surface. Depending on the kind 
of laser applied, the pulp tissue and surrounding dentin 
are damaged thermally due to superficial coagulation/
carbonization, causing thick and deep coagulation or 
necrosis. If inappropriate laser power, time, or technique 
are used, there is increased risk of excessive ablation or 
thermal denaturing of the pulp tissue, resulting in inflam-
mation and necrosis (97). A filling material is applied 
after laser application and establishment of hemostasis 
(Fig. 1C).

Following a report about wound healing of vital pulp 
by laser radiation (98), researchers have reported repara-
tive (secondary) dentin formation due to laser radiation 
(74,75,83,84) (Fig. 1D). Direct pulp capping is the treat-
ment of an exposed vital pulp with a dental material to 
facilitate formation of a dentin bridge and maintenance 
of the vital pulp. 

Future directions
From a clinical perspective, all root canal treatments 
now involve microscopes as part of standard care, but 
the combination of microscopes and lasers has not been 
extensively studied. Many clinicians have been clam-
oring for a microscope that can also harness the power of 
a laser so as to enable them to cut more accurately (99). 
Currently, the clinical long-term success rate for laser-
assisted pulp capping is approximately 90%, while that 
for traditional non-laser pulp capping is approximately 
60% (78,79,81,83). It is speculated that high-quality, 
meticulous direct pulp capping involving microscopes 
and lasers would improve working conditions, increase 
the effectiveness of the interaction between laser-assisted 
pulp and capping material, expand case selections/
applications, and increase the long-term success rates 
as compared with the previously reported results 
(78-81,83,86,100). 

From a basic scientific perspective, the current 
advances in lasers may also contribute to the development 
of future technologies such as the photo-bio-modulation 
(PBM) effect as a result of low-level laser irradiation 
(low-level laser therapy: LLLT) (101). Similar to the 
successful studies in periodontics (44,102), the PBM 
effect could also be applied effectively in direct pulp 
capping and lead to successful reduction of inflamma-
tion, stimulation of cells, promotion of cell proliferation, 
and controlled promotion of partial calcification of the 
vital pulp. Marques et al. reported low-level laser therapy 
(LLLT) (660-nm wavelength, 10 mW power output, and 
2.5 J/cm2 energy density for 10 s in continuous mode) 
as an alternative for pulpotomy in 20 human mandibular 
primary molar teeth (103). Similarly, Fernandes et al. 
reported clinical and radiographic evaluations at 6, 12, 
and 18 post-operative months (104). Based on these 
studies (103,104), low-level laser therapy preceding the 
use of calcium hydroxide exhibits satisfactory results for 
pulp-tissue healing. 

The results of clinical studies concerning the various 
PBM effects have potential, even though they have not 
yet been clearly demonstrated (105,106). In a study 
examining the effects of Nd:YAG laser on blood flow in 
pulp tissue using laser Doppler flowmetry in mandibular 
canines from 13 human patients, a significant increase 
of blood flow in the dental pulp was noted in all laser-
irradiated (30 s at 120-mJ pulses at 10 pulses/s) teeth 
(105). Moreover, an in vitro study (106) reported that the 
mineralization of human dental pulp (HDP) cells is stim-
ulated by laser irradiation. Several animal (74,75,85) and 
clinical (100) studies have reported favorable or potential 
formation of reparative dentin following laser therapy. 
Lasers induce calcification, resulting in the formation 
of ideal reparative dentin to a greater extent than that 
achieved by traditional methods (83). These benefits of 
laser treatment may result in greater long-term success 
of direct pulp capping, making it an advantageous future 
alternative to the current treatment modality.
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