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ABSTRACT!

THE!EFFECT!OF!pH!ON!THE!METAL!BINDING!CAPABILITIES!OF!EXOPOLYMERIC!

SUBSTANCES!FROM!A!MARINE!BENTHIC!DIATOM!

by!Vanessa!June!Maples!O’Donnell!

University!of!New!England,!April,!2013!

The marine sediment-water interface is a dynamic microenvironment containing 

diatoms, which produce exopolymeric substance (EPS). EPS has various functions for 

individual cells and for marine ecosystems. EPS substance is a species-specific 

composition that has strong absorptive qualities and is able to bind metals from even a 

very dilute aqueous solution. As industrially derived metals tend to accumulate in marine 

mudflats, where diatoms are the major EPS producing organisms, it is important to 

determine how marine benthic diatom EPS will bind with metals. To address the metal 

binding properties of diatom EPS, Cylindrotheca closteriums’ EPS was isolated by 

tangential flow filtration, exposed to Cu and Cr at a range of pH levels and analyzed 

using a flame atomic absorption spectrometer. Results indicated that pH was a significant 

factor in the determination of bound Cu to diatom EPS under all treatments. Maximum 

bound Cu was 61.7 µg mg-EPS-1 at a pH of 6.0 in a buffered system and 17.1 µg mg-

EPS-1 at a pH of 6.0 in an unbuffered system. Cu was preferentially bound over Cr and 

precipitation of metals occurred above a pH of 6.5. Diatom EPS binding with metals at a 

near neutral pH is a significant result and has not been shown before in the literature, but 

metal concentrations used in this study were unnaturally high, reducing practical 

implications. More research within this area of marine aquatics is needed to understand 

the greater global ramifications of pH shift effects on estuaries and fate of metals in the 

marine ecosystem. 
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INTRODUCTION 

The study of microbial exopolymeric substance (EPS) is multi-disciplinary and can be 

found in climatology, biochemistry, oceanography, sedimentology, environmental 

science, toxicology, dentistry, medicine and biotechnology. Microalgae and bacteria are 

responsible for producing large quantities of EPS (Decho, 1990). Diatoms are a diverse 

class of unicellular microalgae, called Bacillariophyceae, which have raphae, and are 

encased in a frustule (siliceous wall); many Bacillariophyceae are benthic (Wetherbee et 

al., 1998).  

Benthic diatoms live at the sediment-water interface and have important roles in marine 

ecosystems such as marine food web dynamics and metal absorption (Decho, 1990). 

Motility is crucial for phytobenthic diatoms, which live in the sediment but migrate to 

and from the photic zone (Underwood et al., 2004). Diatoms do this by producing EPS 

from one end of the raphe (Pickett-Heaps and Wetherbee, 1986; Wetherbee et al., 1998; 

Zhang et al., 2008). Organic substances, such as EPS, are released from diatoms during 

all phases of growth, with EPS comprising up to 80–90% of the total extracellular release 

(Myklestad, 1995), but the quantity of EPS produced is phase dependent (Staats et al., 

1999). Decho (2000) describes EPS as a group of large microbially secreted molecules 

that have diverse physical and chemical properties with a variety of biological roles. 

Marine benthic diatoms excrete large amounts of EPS in response to environmental 

conditions and motility requirements (Underwood et al., 2004). EPS surrounding the 
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organism can act as a buffer to physical environmental stresses, acting as a protective 

layer for the cell. For example, production of EPS could reduce the effects of desiccation 

(Decho, 2000). Diatom EPS is mostly composed of carbohydrate-rich polymers (Stal and 

de Brouwer, 2003; Underwood, et al., 2004). EPS has charged functional groups, which 

can act as binding sites (Bhaskar and Bhosle, 2006). A major component of diatom EPS 

is a polyglucuronic acid, (Figure 1) which has one carboxylic acid functional group per 

monomer unit and is a known chelator (Bhaskar and Bhosle, 2006; Escandar and Sala, 

1992; Tajmir-Riahi, 1986).  In addition, EPS has absorptive and adhesive qualities that 

can form mats in surface sediments; these mats do not just lay upon the sediments but are 

integrated with the sediment surface (Bhaskar and Bhosle, 2006).  

EPS has a dynamic nature, able to take on different physical forms and chemical 

compositions according to the environmental conditions. Some of those forms include 

capsules, gels, loose slime and dissolved organic carbon (Decho, 2000). Each of these 

forms influences the function of EPS in the aquatic ecosystem. There are also types of 

EPS associated with any particular EPS producing organism; which include non-attached, 

attached and intracellular. The different types of EPS can play various environmental 

roles. For example, EPS that is closely associated to the cell can be more important for 

binding while the non-attached EPS would most likely be washed out from the sediment 

and not contribute to binding (Decho, 2000). 

The large amount of EPS excreted by marine benthic diatoms is a response to 1) motility 

requirements and 2) environmental conditions (Underwood et al., 2004). EPS excreted by 

diatoms has been shown to have a wide range of ecologically significant functions in 
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marine mudflats (Underwood et al., 2004; Wolfstein and Stal, 2002). For example, EPS 

plays a useful role in sediment quality (Araújo, et al., 2010) by forming extensive 

biofilms on the surface of intertidal mudflats, which stabilize sediment (Stal and de 

Brouwer, 2003; Widdows et al., 2000). Because benthic diatoms are the major 

constituents of the microbial community in intertidal areas, EPS production plays an 

important role in sediment dynamics (Staats et al., 1999). EPS is also capable of forming 

a microenvironment that stabilizes refugia populations (i.e. pathogenic bacteria) entering 

the marine environment from freshwater/terrestrial inputs (Duong et al., 2007). Diatom 

EPS is also important in the ecology of cells living in marine sediments because it can be 

used as a carbon source by bacteria, meiofauna, and macrofauna (Middleburg et al., 

2000). In addition to its biological necessity, EPS plays a key role in the ecology of 

aquatic environments and large scale processes, including cloud condensation nuclei 

(Bigg, 2007), sediment stability (Stal and de Brouwer, 2003; Widdows et al., 2000), food 

resource at the base of the aquatic food chain (Decho, 1990) and metal binding 

capabilities (Comte et al., 2008). 

EPS is able to bind with heavy metals from even a very dilute aqueous solution 

(Ahluwalia and Goyal, 2005). The effectiveness of EPS for removal of metals from 

wastewater is made possible because of a property known as biosorption (Ahluwalia and 

Goyal, 2005), where the biomass can bind with metals, incorporating it.  Because diatoms 

are an abundant source of food for aquatic food webs (Middleburg et al., 2000, Duong et 

al., 2007), the associated EPS can act as a vector for metal bioaccumulation (Staats et al., 

1999).   
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Most research has been conducted on EPS isolated from terrestrial and bacterial sources 

(Christensen, 1989; Decho, 1990; Helyer et al., 1993; Brown and Lester, 1980; Rudd et 

al., 1982; Underwood et al., 1995); however, bacterial EPS and diatom EPS can have 

various environmental purposes. For example, bacterial EPS high in the sugar arabinose 

can aid in bacteria aggregation (particle precipitation) where diatoms’ EPS high in deoxy 

sugars can aid in flocculation (particle clumping); therefore, EPS composition is species 

specific and can alter environmental purpose (Bhaskar and Bhosle, 2005). The role that 

EPS plays in the marine sediment system is becoming of interest owing to the fact that 

diatoms compose up to 99% of the microbial biomass in marine mudflats (Underwood et 

al., 1995), linking EPS to the photoautotrophic community (van Duyl et al., 1999). 

Because diatom EPS binds with metals, determining the capacity of diatom EPS to bind 

with metals will aid in the understanding the fate of metals within aquatic settings and 

can better allow researchers to understand where metals end up in the environment. 

The pH of estuary sediments has been shown to range from 5.0-7.8 (Ponnomperumo, 

1972; van Cappellen and Wang, 1995; Stumm and Morgan, 1996). Benthic diatoms are 

found in highest densities in the upper 3 mm where photosynthesis occurs (Taylor and 

Patterson, 1997; Yallop et al., 2000). Photosynthesis is the main driver of pH changes in 

surface estuary sediments on a diurnal timescale (Schneider and Campion-Alsumard, 

1999; Albertano et al., 2000; Wolaver et al., 1986) but long-term pH changes can be due 

to sulfate reduction (Thorstenson, 1970; Gardner, 1973) and iron sulfide oxidation 

(Giblin and Howarth, 1984).  

At the sediment-water interface, dynamic chemical competitions occur causing 
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adsorption, precipitation, and remobilization processes of metal species (Yu et al., 2000). 

Cu entering into the ocean environment comes mostly from riverine particulates 

(Blossom, 2007), including anthropogenic sources. For example, biocide from marine 

antifouling paints (Blossom, 2007), high ship traffic (Daskalakis and O’Connor 1995) 

and combined sewer outflows  (Iannuzzi et al. 1997) contribute significantly to Cu in 

marine sediments. However, the concentration of Cu in estuary sediment and pore water 

can vary greatly. Solid-phase sediment Cu concentrations in Halifax Harbor reached 250 

ppm (Fader and Buckley, 1995; Buckley and Winters, 1992), while Singapore was 20-

140 ppm (Goh and Chou, 1997) and Penobscot Bay, Maine ranged from 4.4 to 57.7 ppm, 

(Larsen et al., 1983). Sediment particulate Cu concentrations are significantly higher than 

those in sediment pore waters and can be released into the overlying water under acidic 

conditions. Most United States estuarine water concentrations of dissolved Cu ranged 

from 0.3–3.8 ppb (Kennish, 1998), but a higher dissolved Cu concentration (5.4 ppb) was 

found in San Diego Bay, mostly due to antifouling paints (Blossom, 2007).  The EPA 

drinking water standards has set limits of less than 1.3 ppm for Cu and less than 0.1 ppm 

for Cr (EPA, 1991). Even at very dilute environmental concentrations, metals can be 

toxic to humans and ecosystems (EPS, 1991). Metals bioaccumulate in marine 

environments and potentially enter our food sources (Decho, 2000).  

The binding of diatom EPS with metals varies according to, salinity, pH, metal 

concentration, concentration of competing ligands and binding capacity of the ligands 

(ATSDR, 2004).  Knowledge of binding abilities of diatom EPS at the sediment-water 

interface aids in the understanding of the chemical fluxes, water column transport and/or 
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sedimentary accumulation of toxic metals in the benthic environment. The processes 

above could have positive or negative effects but this dynamic system needs to be 

quantified before any conclusions can be drawn. This study examined binding of diatom 

EPS to metals with changes in pH and the relative binding of Cu and Cr. This study aims 

to 1) pH had a significant effect on diatom EPS binding with Cu and 2) whether Cu 

and/or Cr were preferentially bound at various pH levels.  

 

METHODS 

Organism and Culture Conditions 

Strains of Cylindrotheca closterium species (obtained from the Culture Collection of 

Algae and Protozoa, CCAP Argyll, Scotland) were grown in f2 medium at 16 °C. 

Cultures were illuminated at an incident irradiance of 60 micromol photons m-2 s-1, over a 

light: dark cycle of 14:10 h. Culturing methods used are from Staats et al. (1999). Sea 

sand was collected and sieved using a 50-micron sieve. The sieved sea sand was then acid 

washed and autoclaved. The diatom cultures were grown on the purified sand substrate at 

a salinity of 30 PSU in 1000 mL glass Erlenmeyer flasks. Sterility of the culture was 

assessed to ensure they were axenic by plating on Lysogeny broth agar medium and 

observing with a compound microscope. Cultures were discarded if contaminated 

(Bhaskar and Bhosle, 2006). 

 

Isolation of EPS 

Methods of EPS extraction and isolation for Cylindrotheca closterium were modified 
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from  Staats et al. (1999). Briefly, the diatom cultures were harvested in exponential 

growth at the same time of day (11 am - 3 pm). Cells were homogenized by gently 

swirling prior to harvest. Suspended cells were poured off and centrifuged for 15 min at 

4000 g at 10 °C. The supernatant was reserved and the pellet was re-suspended in tap 

water for 1 hr at 30 °C. The suspension was subsequently centrifuged for 30 min at 4700 

g and 10 °C, yielding the attached EPS (Figure 2). Because nonattached EPS is present in 

the culture supernatant, this EPS fraction was pre-concentrated by ultrafiltration using 

tangential flow filtration (TFF) (Pellicon XL Ultrafiltration Module Biomax 5 kDa) 

(Figure 2). Attached and nonattached EPS were combined and EPS was precipitated 

using reagent grade ethanol in 80% (v/v). Ethanol was then evaporated off and 

evaporation speed was increased by flowing nitrogen gas over the solution surface. Dry 

weight was measured using an analytical balance prior to compositional analysis.  

 

Experimental Setup 

Experimental methods were adapted from Bhaskar and Bhosle (2006). Briefly, metal 

stock solutions of Cu and Cr were prepared by dissolving appropriate quantities of copper 

sulfate and chromium (III) acetate in deionized water within a range of pH (specified in 

experiments below) (Table 1). A known amount of EPS was dissolved in a known 

volume of water (amounts varied by experiment and are indicated in Table 1). EPS 

solution was placed in dialysis bags with molecular weight 3.5 kDa cutoff membrane and 

suspended in acid-cleaned containers with the metal solutions at various pH. If a buffer 

was used it was added to the solution and mixed well, prior to adjusting pH. The pH was 
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adjusted using NaOH and measured using a pH meter (Hanna!HI322001).!The dialysis 

bags and metal solutions were equilibrated with constant agitation. After equilibration, 

the bags were removed from the metal-containing solution. Blanks at each pH level were 

performed, in which the diatom polymer solution was replaced with an equal volume of 

deionized water and then equilibrated. Similarly, to ensure there was no metal being 

introduced, EPS without any metal treatment was equilibrated in deionized water and 

used as a control with five replicates. Dialysis bags of all treatments and blanks were 

retrieved after 140 min of exposure to metal solution and analyzed for metal bound to 

EPS. 

  

Optimization of Chemical Kinetics 

Kinetic analysis of EPS and Cu binding was performed using the methods described 

above. Cu (5.6 ppm) was exposed to EPS (6.3 x10-5 g) and the EPS analyzed for bound 

Cu at  pH 6 at a range of times (0.5, 0.8, 1.3, 1.8, 2.3, 3.0, 4.8, 6.0, 17 and 24 h) to 

determine the optimal time of metal binding. The system was buffered using 3-(N-

morpholino) propanesulfonic acid (MOPS).  

 

Effect of pH/Metal 

Three experiments were performed to test for the role of pH and the comparative uptake 

of Cu and Cr. Experimental setups were done in replicates of five (control and at each pH 

treatment). All blanks from each pH treatment were averaged and subtracted from the 
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sample value; any concentration above the averaged blank was assumed to be metal 

bound to EPS.   

pH 3-7 Experiment   

EPS (1.68 x10-4 g) was exposed to Cu solution (15 ppm) and analyzed for bound Cu, at a 

broad pH range (3-7). The system was not buffered (Table 1). This experiment was 

completed to determine a general trend of how pH affects EPS and Cu binding.  

pH 6-8 Experiment  

Cu (5.6 ppm) was exposed to EPS (6.3 x10-5 g) and analyzed for bound Cu at a pH range 

(6-8). The system was buffered using 3-(N-morpholino) propanesulfonic acid (MOPS) 

(Table 1). This experiment was completed to determine understanding of how pH affects 

EPS and Cu binding in marine sediments by looking at actual sediment pH range.  

Cu vs. Cr Experiment  

An EPS binding experiment was conducted where Cu (15ppm) and Cr (12.3 ppm) were 

co-dissolved and exposed to EPS (1.68 x10-4 g) and bound metals were measured to 

determine if metals are preferentially bound to EPS. 

 

Determination of Metals Bound to EPS 

Unknown&Sample&Solution!!

3.5!mL!of!the!EPS!solution!(n=5)!or!controls!(n=5)!was!pipetted!out!of!the!dialysis!

tubing!and!placed! in! a!10!mL!volumetric! flask.!Distilled!deionized! (DI)!water!was!
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filled! to! the!mark! and!mixed! thoroughly.! Note:! All! glassware!was! acid!washed! to!

eliminate!cross!contamination.!!

Metal&Solutions!

Cu! standard! stock! solutions! (0.1,! 0.5,! 1,! 2! and! 10! µg/mL)! and! Cr! standard! stock!

solutions!(0.1,!0.5,!1,!5!and!10!µg/mL)!were!prepared!with!care!to!ensure!accuracy!

and!precision.!Appropriate!amounts!of!reagent!grade!metal!solutions!(1000!µg/mL!

singleRelement! stock! solutions! in! 2R10%! nitric! acid)! were! placed! in! 100! mL!

volumetric!flasks.!Distilled!DI!water!was!filled!to!the!mark!and!mixed!thoroughly.!

Instrumentation&and&Settings!!

The! flame! atomic! absorption! spectrometer! (AAS)! (932 Plus, GBC Scientific) used!

air/acetylene!flame.!The instrument was calibrated to ensure accurate results by doing 

the following 1) setting up parameters specific to the metal as noted in the!

instrumentation! manual,! 2)! burner! alignment,! 3)! using! a! proper! hollowRcathode!

lamp! either! Cu! ! (λ=! 324.7)! or! Cr! (λ=! 357.9)! (Athanasopoulos,! 2002).! Deionized!

water!was!aspirated!for!30!sec!between!each!sample.   

Measurement&Method&Using&Flame&AAS!

Samples,! including! stock! solutions,! were! gently! inverted! 3x! prior! to! analysis! and!

then!sampled!using!flame!atomic!absorption!spectrometer.!Each!sample!was!tested!

for! 3! seconds! and! sampled! 3! times,! and! then! an! average! absorbance! was!

determined!by!instrumentation!software.!A!calibration!curve!was!used!to!determine!

the!unknown!sample!concentrations!(Figure!3).!
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Saturation Calculation 

Saturation state of the solutions with respect to precipitation of Cu(OH)2 was calculated 

using activities rather than concentrations to incorporate reactivity of ion species (Harris, 

2002). Ionic! strength! (I)! of! the! solution! was! calculated using the concentrations of 

experimental ions under various pH conditions [1]. Because! I! <! 0.01,! the! activity!

coefficient!(γi)!was!then!determined!using!the!DebyeRHuckel!Limiting!Equation,![2]!

(Harris,!2002).!!!

! Ionic Strength =!! I!=!1/2!Σ!Mi!Zi2! ![1]!

where Mi is the concentration (M in mol l-1) of ith ion and Zi!is its ionic charge 

 

Debye-Huckel Limiting Equation:!!

log!γi!=!R!A!Zi2!I!1/2! ! ! !! ! ! ! ! [2]!

where A is a constant (0.51) !

 

Activity =!! a!= γi Mi! ! ! ! ! ! [3]!

! where, Mi = concentration ith ion (mol / L) and!γi = activity coefficient of ith ion 

The!activities!of!ions!were!then!calculated!using!equation![3]!and!used!to!calculate!

the!Ion!Activity!Product!(IAP)!by!multiplying!activies!by!one!another.!!The!IAP!was!
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then!used!to!determine!if!(1)!dissolved!ions!are!below!saturation!in!solution!(IAP < 

Ksp), where Ksp is the solubility product and for Cu(OH)2 equals 4.8E-20) (2)! the!

solution! is! at! saturation! (IAP=Ksp),! or! (3)! if! ions! are! at! concentrations! above!

saturation!and!therefore!should!precipitate!(IAP > Ksp) (Harris, 2002). 

 

RESULTS 

Kinetics Experiment 

The maximum binding of EPS occurred at 140 min (Figure 4), which indicates the 

potential of metal binding conditions within the buffered, experimental system.   

 

pH 3-7 Experiment 

EPS binding with Cu increased from a pH of 3 to a pH of 6, and then binding decreased 

from a pH of 6.5 until a pH  of 7  (Figure 5). Maximum bound Cu was 17.1 µg mg-EPS-1 

and occurred at a pH of 6.0. IAP becomes greater than Ksp above pH 6.5, which indicates 

that precipitation of Cu(OH)2 should occur above pH of 6.5 while Cu ion should remain 

completely dissolved below pH 6.5 under these experimental conditions (Figure 6). 

Visual observation of metal solution showed a blue tint at a pH of 7. 

 

pH 6-8 Experiment 

EPS binding of Cu decreased from pH of 6 to 8 , where binding of 61.7 µg bound Cu mg-

1 was highest at pH of 6 (Figure 7). Visual observation of metal solution showed a blue 

tint starting at a pH of 7 and increasing in color intensity until pH of 8. 
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Cu vs. Cr Experiment 

EPS preferentially bound with Cu over Cr throughout the experiment pH range. Binding 

of both metals slightly increased from a pH of 4 to a pH of 5, where Cu binding was 

highest at 10.4 µg bound Cu mg-1, and Cr binding was highest at 5.4 µg bound Cr mg-1. 

Then binding for both metals decreased from a pH of 5 until pH of 8 (Figure 8). Visual 

observation of metal solution showed a blue tint at a pH of 6 and increasing in color 

intensity until pH of 8. 

 

DISCUSSION 

Photosynthesis is a major driver of diurnal pH change in marine sediment. As sediment 

pH decreases, metals tend to change species from a complexed to a free form (Raven et 

al., 2005). Lower pH is of concern due to its influence on dissolved metal speciation 

(Sudhanandh et al., 2011). Even at very low concentrations, metals can be toxic in 

aquatic environments. This study aimed to address the dynamic relationship between 

EPS-metal binding and pH as it relates to this environmentally relevant issue.  

EPS harvested from C. closterium displayed maximal Cu binding at 2.2 h (Figure 4). This 

finding is similar to that found for Cu binding to bacterially derived EPS that maximized 

at 2 h under similar experimental conditions (Bhasker and Bhosle, 2006). The difference 

of 0.2 h in maximal binding could be due to Bhasker and Bhosle’s (2006) use of higher 

MW cutoff (6-8 kDa) dialysis tubing as opposed to the 3.5 kDa cutoff used in this study. 

Metals could also equilibrate faster, reaching all the binding sites more quickly with 6-8 
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kDa dialysis tubing. There is also a slight decrease after maximum binding occurs in both 

this study and Bhasker and Bhosle’s (2006) (Figure 4). The slight decrease could be due 

to the breakdown of EPS into smaller molecular weight decreasing the bound EPS or 

breaks down small enough to escape through the dialysis tubing.  

EPS maximum uptake in this study was 61.7 µg bound Cu mg-EPS-1 in the buffered 

system (Figure 7) while the unbuffered system yielded 17.1 µg bound Cu mg-EPS-1 

(Figure 5). The difference in bound Cu is potentially due to variability in EPS binding 

ability.  EPS composition may have varied in each batch culture, and separate batches of 

isolated EPS were used for each experiment. Batches were also harvested at different 

times during the day accounting for variation in EPS and binding capabilities. EPS 

composition variability is common among species, for instance, C. closterium EPS 

composition varies on diurnal scales (de Brouwer and Stal, 2002) and with temperature 

and irradiance (Wolfstein and Stal, 2002). The binding capacity range determined in this 

study for diatom EPS is consistent with binding capacity found for bacterial EPS in the 

literature. Bound Cu to bacterial EPS was 189 µg mg-EPS-1 (Bhasker and Bhosle, 2006), 

16.8 µg mg-EPS-1 (Ford et al., 1987) and 114 µg mg-EPS-1 (Mittelman and Geesey, 

1985).   

Although more research needs to be done to understand the binding of EPS at various pH, 

EPS binding at near neutral pH is a significant result because this is the natural pH (5.0-

7.8) of marine sediments (Ponnomperumo, 1972; van Cappellen and Wang, 1995; Stumm 

and Morgan, 1996). EPS binding with the metals Cu2+ and Cr3+ is pH-dependent and 

under these experimental conditions, the data suggest that EPS binding with Cu is 
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optimal between a pH of 6-6.5 (Figures 5 and 7) at the Cu concentrations used here. It 

has been previously shown that glucuronic acids form complexes with metal ions at these 

pH levels (Cook et al., 1986; Escander and Sala, 1992; Jeon et al., 2002; Kohn, 1987; 

Rudolf, 1987). At higher pH levels, the amount of Cu used in these experiments forms a 

precipitate of Cu(OH)2 (s) that is unavailable to bind with EPS (Harris, 2002). As pH 

decreases from 8 to 6, the Cu is more soluble and Cu2+ ions are increasingly available for 

EPS binding. However, more research is needed to better understand and make 

conclusions at pH treatments greater than 6 (Figure 5 and 7). These conclusions were 

similar to those reported by Ferris et al. (1989), Loaëc et al. (1998) and Lores and 

Pennock (1998). With decreasing pH levels below 6, there is less Cu-EPS binding due to 

higher proton concentrations competing for binding sites in acidic solutions. EPS 

becomes protonated as pH decreases and binding with metals decreases. This finding is 

consistent with Cook et al. (1986), who found that glucuronic acid dissociated from 

metals below a pH of 5.  

Metal pollution in coastal waters has a positively correlated relationship to 

bioaccumulation in fish, which is a food source for many (Metwally and Fouad, 2008). 

EPS binding of metal is the highest at a near neutral pH in the sediment-water interface, 

where metal bound to EPS is consumed by bacteria and their grazers (Decho, 1990), 

possibly contributing to bioaccumulation. 

EPS binds more with Cu2+ than Cr3+ (Figure 8). Abdullah et al. (2007) found that 

although Cr (water and sediment) concentrations were higher than Cu, Cu was 

bioaccumulated in mussels over Cr in all cases. Cu has higher electronegativity than Cr, 
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which may explain why EPS can preferentially bind Cu over Cr. The greater affinity of 

EPS for Cu could protect the diatoms from Cu but the fate of the Cu would vary due to 

this dynamic system. For example, if the EPS saturated Cu was consumed by another 

organism, bioaccumulation of Cu could occur. EPS binding with Cu could possibly lead 

to metal sedimentation. It is important to note there are differences in Cu and Cr IAP 

curves and precipitation of Cu occurs at a higher pH of 6.25 while that of Cr occurs at a 

pH of 5.25 (Figure 9). 

For future experiments, work should be completed with lower dissolved metal 

concentrations to mimic a more environmentally realistic environment, perhaps using 

graphite furnace to achieve necessary detection limits. Metal concentrations found in 

ambient mudflat sediments are much lower than this study used, this study metal 

concentrations ranged from 5.6-15 ppm.  

This study demonstrates that 1) EPS could selectively bind Cu over Cr with metals over a 

wide pH range and potentially influence metal fate/distribution and 2) pH affects the 

binding capacity of diatom EPS. More research is needed to understand metal absorption 

at the dynamic sediment-water interface in marine mudflats, as affected by controlling 

factors such as microbial communities, EPS composition, type of sediment, cations 

present, and metal species (Petruzzelli et al., 1985; Zhu and Alva, 1993).  
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FIGURES 

 

Figure 1.  Molecular structure of polyglucuronic acid, with molecular formula of 
C6H1007. (Elboutachfaiti et al., 2011). 

 

Figure 2.  Extraction and isolation of marine diatom EPS  
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Figure 3. Sample Calibration curve of Cu standard stock solutions used to determine 
metal concentrations of unknown samples. 

 

Figure 4.  Chemical kinetics of EPS binding with Cu over a 24-hour period. Optimal 
binding occurs at 2.2 h at pH of 6 (n=1). 
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Figure 5. Influence of pH on EPS binding with Cu in an unbuffered system. Within this pH 
range, EPS bound Cu maximizes (at 17.1µg mg-1) at pH of 6.0-6.5 (n=5). 

 

 
 
 
 
 
 
 
 
 
 

Figure 6. Calculated IAP of Cu(OH)2, which exceeds the Cu(OH)2 Ksp (horizontal line) 
at pH of 6.5.  
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Figure 7. Influence of pH on EPS binding with Cu in a MOPS buffered system. EPS bound 
Cu maximizes at 61.7 µg mg-1 of diatom EPS at pH of 6.0 (n=5). 

 
 

 
Figure 8. Influence of pH on EPS binding of Cu and Cr (4-8) (n=5). 
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Figure 9. Calculated IAP of Cu(OH)2, which exceeds the Cu(OH)2 Ksp at pH of 6.25 and 
calculated IAP of Cr(OH)3, which exceeds the Cr(OH)3 Ksp at pH of 5.25. 
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Table 1. Experimental design of pH effects on diatom EPS binding capacity. 

 
pH 

Range Increments 
EPS(g):  

Metal (ppm) 
EPS (g) Temp. 

(˚C) 
Buffer 

3-7 1.0 1: 8.9 E-4 1.68 E-4 30 No 

6-8 0.5 1: 8.9 E-4 6.31E-5 23.4 Yes 
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