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Abstract 

At certain upper and lower threshold temperatures (critical temperatures 

(Tc) crustaceans switch to anaerobic metabolism despite sufficient oxygen 

availability in the environment. I tested the hypothesis that failure of the heart at 

critical temperatures leads to insufficient oxygen delivery and subsequent 

anaerobiosis in peripheral tissues.  

I exposed rock crabs, Cancer irroratus, as whole animals, and their buffer-

perfused semi-isolated hearts to a progressive temperature increase, while 

monitoring heart rate and lactate accumulation. The whole animals heart rate 

increased with temperature following a Q10 of 2.8. An abrupt decline in heart rate 

occurred at 25°C and lactate accumulation occurred between 25°C and 30°C. 

The semi-isolated hearts followed a Q10 of only 1.2 during temperature increase. 

A second set of semi-isolated hearts were perfused and paced at a heart rate 

comparable to the whole animals at each temperature. The lactate concentration 

in the paced semi-isolated hearts did not significantly increase. AMPK activity 

and HSP70 levels were measured to investigate cellular changes occurring at Tc. 

Preliminary data suggests they are not good indicating parameters of Tc for 

isolated hearts. 

I conclude that the whole animal’s Tc is 5°C lower than that of the heart 

muscle. Therefore, the onset of anaerobiosis in the peripheral tissues is not due 

to failure of the heart muscle. The processes within the whole animal that lead to 

anaerobiosis are set by other organ systems.   
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Introduction: 

 This study investigates the mechanism responsible for setting the upper 

threshold of temperature tolerance in the rock crab, Cancer irroratus.  I compared 

the upper temperature threshold of the animal to the temperature threshold of 

semi-isolated hearts to determine whether the circulatory system is responsible 

for initiating the temperature induced onset of anaerobiosis in peripheral tissues.   

 

  Cancer irroratus, the rock crab 

The rock crab, Cancer irroratus, is a decapod crustacean, closely related 

to the commercially used Jonah crab, Cancer borealis. Rock crabs are larger 

crabs ranging in size from 50 – 140 mm (Wong and Barbeau 2005, Stehlik et al. 

2004, Gendron 2001). They can be found under rocks, buried in the mud, or in 

small crevasses along the shore line and within the subtidal zone of the Atlantic 

Ocean. They are found as far north has Labrador, Canada and as far south as 

South Carolina, USA. Rock crabs are scavengers who eat a variety of things, 

including: pieces of fish, algae, polychaetes, mussels, gastropods, and various 

other crustaceans (Gendron 2001). They live mainly in the subtidal zone, which 

begins at the lowest tide line, below the intertidal zone, and is always 

submerged. The areas of the subtidal zone vary in depth. It reaches as deep as 

the bottom of the sea floor where current from the waves can still be felt. 

However this wave current is much smaller than in areas that are affected by the 

tides. On a day to day basis there is very little temperature or salinity change, 
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providing a consistent environment for sea animals. However, these animals do 

have to be able to adapt to seasonal temperature changes. The winter 

temperatures are usually around 6°C, and in the summer it gets up to 21.5°C 

(Wong and Barbeau 2005, Stehlik et al. 2004).  

Cancer irroratus is not often used as a model organism in scientific 

studies. As of March 30, 2006 only 24 papers were found on PubMed and only 

12 in Academic Search Premiere using the keyword “Cancer irroratus”. The 

current published papers investigated topics such as food habits (Ristvey and 

Rebach 1999), behavioral interactions with other crustaceans (Gendron et al. 

2001), and the effects of harmful pollution in the water on metabolism (Chou et 

al. 2002, Tucker and Matte 1980); but none looked at anaerobic metabolism or 

temperature tolerance. I chose these animals because, they are large, easily 

accessible, inexpensive to catch and care for, and they provided a good model 

organism to test the hypothesis of the current project.  

 

Circulatory System 

Rock crabs, like all decapod crustaceans, have a single chambered heart 

that is attached to the dorsal carapace of the crab. The heart is suspended by a 

series of ligaments within the pericardial cavity, which totally surrounds the heart. 

The pericardial cavity acts as a second chamber of the heart because the 

returning hemolymph collects here prior to reentering the actual heart chamber. 

In mammalian hearts this function is fulfilled by the atria. Prior research has 

shown that with an increase in heart rate there is a decrease in the cardiac 
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output because hemolymph does not move fast enough through the pericardial 

cavity and into the heart chamber before the next contraction (McMahon and 

Burnett 1990, Cooke 1988, Wilkens and Kuramoto 1998, Saver et al. 1998).  

Even with these limiting factors of a single chamber, the heart is still capable of 

pumping with enough force to account for the complete circulation of hemolymph 

throughout the entire body (McMahon and Burnett 1990).  Past studies have 

found the following average cardiac outputs and stroke volumes for several 

decapods under normal conditions.  

Table 1: Cardiac output and stroke volume for three decapod crustaceans. 

 
 

 
The rate of the heart is controlled by the central nervous system in three 

ways: 1.) by direct innervation of the heart; 2.) through pacemaker cells located 

under the heart, which are nerve cells as oppose to muscle cells as in humans; 

and 3.) by interaction with neurohormonal agents. While the myocardium is 

innervated, the heart is more closely regulated by the cardiac ganglion located 

between the heart and dorsal carapace. The cardiac ganglion consists of 9 

neurogenic pacemaker cells clustered into three nerves, two posterior excitatory 

nerves and one anterior inhibitory nerve (figure 1). The cardiac ganglion neurons 

innervate muscle fibers in the heart and respond to stretch (McMahon and 

Species Cardiac Output 
(mL·kg 

-1
·min 

-1
) 

Stroke Volume 
(mL·kg 

-1
) 

Reference 

Cancer magister 159 + 56 1.63 + .58 McMahon and Burnett 1990 

Carcinus maenas 118 1.3 Taylor and Butler 1978 

Cancer productus 103 – 275 1.9 – 2.8 McMahon and Wilkens 1977 
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Burnett 1990). Several studies have reported a direct correlation between the 

cardiac ganglion bursts and the observed heart rate (Saver et al. 1998, Cooke 

1988). The excitatory or inhibitory state of the cardiac ganglion of the crab is 

influenced by circulating neurohormonal agents, i.e. peptide hormones, such as 

FMRFamide-related peptide (F1 + F2), and proctolin (PR). These hormones 

increase calcium uptake into the cells. The cardiac ganglion is also influenced by 

central excitatory or inhibitory discharge from pericardial organs, and by auto 

regulation of the amount of stretch applied to the walls of the heart which affect 

the dendritic trees of the pacemaker cells (Cooke 1988). 

 
Figure 1: Nervous system in the dorsal wall of the heart of a lobster. Identified in this figure is the 
ganglionic trunk and its nerve-cells (Tr gang), the dorsal nerve piercing the heart-wall (N dors) 
and the ostium (Os). In the crab the posterior artery does not extend directly from the heart but it 
is connected to the sternal artery (see Figure 2). (modified after Cooke 1988). 

 

Crabs have a complex open circulatory system. They have arteries that 

divide to form small tubules similar to human capillaries which help direct the 

initial flow (McMahon and Burnett 1990). Specifically there are two hepatic, two 

lateral, one anterior and one posterior artery (Maynard 1960)(Figure 2). The 

Anterior artery 

Hepatic artery 

Lateral artery 

Posterior artery 
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difference between the arteries in crabs and those in humans is that as oppose 

to smooth muscle in the walls they have elastic fibers, which have regulatory 

capabilities like arteries in vertebrates. The control of these arteries comes from 

excitatory and inhibitory nerve fibers that innervate the elastic walls and cause 

either constriction (excitatory) or dilation (inhibitory) (McMahon and Burnett 

1990). The hemolymph that is ejected from the heart is pumped through the 

arteries, into the tissues and then into the interstitial space. From there it moves 

into the lacunae, which are analogous to our veins. However, they are just open 

spaces between the tissues without a separate epithelial lining. These lacunae 

direct the hemolymph into the pericardial cavity and the hemolymph then enters 

the heart chamber through dorsal valves known as ostia, when the pressure in 

the pericardium cavity exceeds the pressure in the heart chamber (McMahon and 

Burnett 1990).  

 

 

 

 

 

 
 
 
 
Figure 2: An internal view of the open circulatory system in decapod crustaceans (modified after 
McMahon and Burnett 1990). 

 
 
Temperature 

Anterior artery 

Lateral artery 

Hepatic artery 

Heart with ostiae 

Sternal artery 

Posterior artery 
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Crustaceans, and other invertebrates, are ectothermic which means that 

their body temperature changes in response to their environment. Therefore, the 

processes in their body are directly affected by the temperature of their 

environment. In contrast, humans are endothermic and maintain a constant body 

temperature such that their internal processes are not directly affected by 

environmental temperature changes.  Temperature induced changes in 

ectotherms affect all biochemical and physiological processes. In addition, 

behavioral changes have been observed in some crustaceans, like the lobster, 

due to temperature variations (Crossins et al. 1998). Not only do the rates of 

these processes rise and fall with temperature, but these changes usually double 

with a temperature increase of 10°C. The doubling or tripling of metabolic rates 

and/or other processes in 10°C intervals is described as the Q10 relationship. For 

example, if at 10°C the rate of a biological process is 100, then by 20°C the rate 

will increase to 200 and by 30°C it will increase to 400. This temperature-rate 

relationship has been observed for many different biochemical and physiological 

processes in many different animals (Figure 3). The Q10 relationship for oxygen 

consumption as a measure of metabolic rate in various species was described by 

Krogh (1914) as a universal effect. 
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Figure 3: Original Q10 curve measured by Krogh for oxygen consumption.  Oxygen consumption 
rates are normalized between the different species, and all follow the same relationship (Cossins 
and Bowler 1987). 

 
 

The Q10 can be calculated for: 

A 10° interval:  Q10 = R2T+10°C / R1T (R is rate, T is temperature at that 

rate) 

or 

for any temperature interval:  Q10 = (R2 / R1)
(10/ T2 -T1) (Cossins and Bowler 1987). 

Under normal conditions animals living in the subtidal zone are not 

subjected to large temperature changes within small periods of time. Therefore, 

the changes that occur in the processes of these animals are relatively slow and 

give the crustaceans enough time to adequately adapt to the changes in 

temperature when they do occur. These adaptations include, for example, 

behavioral changes, the expression of different protein isoforms, adjustment of 
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the mitochondrial density, and others (for review see Cossins and Bowler 1987). 

Other crustaceans that live, for example, in the intertidal zone, experience larger 

daily temperature changes. Therefore they need more adaptive capabilities to 

endure the internal changes that occur with temperature, as well as the external 

changes in the environment that occur in response to temperature, such as 

oxygen concentration or the salinity in the water (Taylor 1988). 

 

Critical Temperatures 

When the temperature increases above the physiological range, 

crustaceans among other species, switch from aerobic metabolism to anaerobic 

metabolism even though there is sufficient oxygen available in the environment. 

The switch to anaerobiosis occurs due to a mismatch between the oxygen 

demand of the issues and the supply being delivered. With an adequate supply 

of oxygen in the environment, it means that the inadequate supply of oxygen to 

the tissues must be due to an inadequacy in the processes that are responsible 

for delivering the oxygen to the tissues. The temperature at which the onset of 

anaerobic metabolism occurs, and end products of anaerobic metabolism 

accumulate, is defined as the critical temperature (Tc) (Zielinski and Portner 

1996) (Figure 4). 
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Figure 4: Temperature tolerance model based on Shelford’s law of tolerance (1931). Animals live 
mainly in a temperature preference range with maximum oxygen availability to their tissues. The 
animals can endure higher and lower temperature with in their physiological tolerance range. At 
the critical temperatures (Tchigh and Tclow) metabolism switches to anaerobiosis and survival 
beyond these thresholds temperatures is limited to very short periods of time. (adapted from 
Frederich and Portner 2000).  

Critical temperatures were first described in the worm, Sipunculus nudus, 

which lives in the sediments of the intertidal zone (Zielinski and Portner 1996). 

The aim of that study was to look at how the worm’s energy and acid-base status 

changed with temperature. The animals in the study were exposed to low 

temperatures of 4°C and 0ºC for a period of 8 days. Oxygen consumption, 

intracellular pH and anaerobic end products (acetate, succinate and propionate) 

were measured. The critical temperature was characterized between 4°C and 

0ºC by the increase in anaerobic end products. Additionally, right before the Tc 

was reached the ATP concentration in the tissues and oxygen consumption 

decreased rapidly.  

A subsequent study to describe Tc used the lugworm, Arenicola marina, 

and similarly looked at temperature dependent changes in energy metabolism 

and acid-base status (Sommer et al. 1997). Two different populations from two 

different environments (North Sea, Germany and White Sea, Russia) were 
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compared and the results showed that the different populations had two different 

critical temperatures, characterized by the accumulation of the anaerobic end 

product acetate. In addition to a low critical temperature, a high critical 

temperature was also characterized in both populations. This study confirmed the 

general concept of critical temperatures and showed that the actual Tc can shift 

with temperature adaptation. 

 More recent studies confirmed the concept of critical temperatures in 

gastropods (Limopsis marionensis, Laterula elliptica, and Littorina saxatilis), 

cephalopods (Pareledone charcoti and Lolliguncula brevis), crustaceans (Maja 

squinado), and even in vertebrates (eelpouts, Zoarces viviparous and Pachycara 

brachycephalum) (for references see table below). All of these studies found 

different critical temperatures in different species, but confirmed the general 

concept of Tc.  

 

 

 

 

Table 2: Critical temperatures characterized by the onset of anaerobiosis as described in 
invertebrates and vertebrates.   

 

Species 
Common Name 

Critical 
Temperature 

(Tc) 
Low        High 

˚C 

Accumulation of 
Anaerobic End 

Product 
 

 

 
Reference 

Sipunculus nudus 
Sipunculid 

0-4 Acetate, succinate, 
propionate 

(Zielinski and Portner 
1996) 

Arenicola marina 
Lug worm, polychaeta  

 5               20 Acetate, propionate (Sommer et al. 1997) 
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Lolliguncula brevis 
Squid 

             26-31 Octopine (Portner et al. 1996) 

Maja squinado 
Spider crab 

   1             30 Lactate, succinate (Frederich and 
Portner 2000) 

Limopsis marionensis 
Bivalve 

2-4 Succinate, acetate (Portner et al. 1999) 

Littorina saxatilis 
Gastropod 

                  28 Succinate (Sokolova and 
Portner 2003) 

Laterula elliptica 
Bivalve 

6                    Succinate (Peck et al. 2002) 

Zoarces viviparous 
Eelpout 

             21-24 Succinate (Van Dijk et al. 1999) 

Pachycara brachycephalum 
Eelpout 

9 Succinate (Van Dijk et al. 1999) 

 

Depending on the species studied, different anaerobic end products were 

measured because the pathways of anaerobic metabolism vary with species. All 

species break down glucose through the process of glycolysis and end with 

pyruvate. The pathway of anaerobic metabolism from pyruvate to the respective 

end products differs between species. Whether the anaerobic end product is 

lactate, succinate, propionate or octopine depends on the specific enzymes in 

the biochemical pathways. However, the accumulation of the respective 

anaerobic end product always indicates the onset of anaerobiosis and, during 

temperature stress, the critical temperature.  

 

AMP-activated Protein Kinase 

In response to temperature increases, animals switch to anaerobic 

metabolism, which means that production of ATP, the basic unit of cellular 

energy, is drastically decreased. The major ATP producing pathways, Krebs 

cycle and subsequent oxidative phosphorylation, require oxygen which is no 
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longer accessible to the cells at temperatures beyond Tc. A recent study 

(Melzner et al.. 2006) investigating critical temperatures in the cephalopod, Sepia 

officinalis, actually measured ATP concentrations at various temperatures 

ranging from 8°C-26°C. Their results indicate that ATP is conserved throughout 

the temperature increase until about 5 degrees before the critical temperature, at 

which time there is a decrease in the ATP concentrations.  

While the regulation of the individual pathways of energy metabolism is 

standard textbook knowledge, the integrative regulation of all the pathways was 

poorly understood until recently. Work on mammalian systems showed that 

AMP-activated protein kinase (AMPK) plays an important role.  AMPK is a 

protein/enzyme, found in the cytosol and the nucleus of the cell, that plays a 

crucial role in monitoring and adjusting the energy levels within a cell (Winder 

2001).  

AMPK is activated, both during times of short-term metabolic changes, 

and also during chronic adaptations. AMPK is activated by an increase in AMP 

which directly correlates to a decrease in ATP through the adenylate kinase 

reaction: the hydrolysis of ATP leads to ADP and Pi. Two ADP in turn are 

converted by the adenylate kinase enzyme into another ATP and an AMP. 

 

ATP    -> ADP + Pi           (ATP hydrolysis) 

2ADP -> ATP + AMP    (adenylate kinase reaction) 

A breakdown of ATP therefore leads directly to an increase in AMP, which makes 

AMP a good indicator of ATP turnover. 



 

 

16 

 

. 

. 

AMPK contains three subunits (α, β, γ). The α-subunit contains the 

catalytic activity, the beta and gamma subunits have regulatory functions 

(Ruderman and Prentki 2004). AMPK gets activated allosterically by binding 

AMP to the gamma subunit. Additionally, AMPK can be activated via 

phosphorylation by AMPK-kinases (AMPKK). The AMPKK are also activated by 

AMP. One AMPKK was recently identified as LKB1, a tumor suppressor (Woods 

et al. 2003). Details of the LKB1 activation and its relevance for AMPK are 

currently under investigation. AMPK is more susceptible to phosphorylation by 

AMPKK if AMP is already bound to the γ-subunit. Maximum AMPK activity is 

achieved through AMP binding to AMPK and phosphorylation of AMPK through 

AMPKK (Ruderman and Prentki 2004, for review see Kemp et al. 2003). 

The purpose of activated AMPK is to decrease the amount of ATP lost to 

processes unnecessary during stressful situations (i.e. digestion), and therefore, 

to save ATP for the critical organs and tissues. This is done by inhibiting ATP-

consuming pathways (i.e. glycogen, protein and fatty acid synthesis) and 

activating ATP-producing pathways (i.e. glucose uptake, glycolysis, fatty acid 

oxidation). AMPK affects each pathway in a different way, mostly by inhibition or 

activation of rate-limiting enzymes. AMPK can also induce chronic changes to 

the pathways by effecting gene expression (for review see Hardie and Sakamoto 

2006). AMPK is often referred to as a “metabolic master switch” or “low fuel 

gauge” (Hardie & Carling 1997, Winder & Hardie 1999) 
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Figure 5: Activation and regulation of AMPK. Cellular stress leads to an increase in the AMP 
concentration, AMP in turn activates AMPK and AMPKK. Activated AMPK activates ATP 
producing pathways and inhibits ATP consuming pathways. Question marks represent unknown 
downstream targets of AMPK for the specific pathway (Kemp et al. 1999). 

 
At this point, AMPK regulation of energy metabolism is only described in 

mammals such as rats, mice and humans, but little is known about its role in 

invertebrates. AMPK has been highly conserved during evolution so we 

hypothesize that it plays a crucial role, not only in vertebrates, but also in 

invertebrates. A recent study demonstrated AMPK activation in frogs (Bartrons et 

al. 2004).  This study shows a significant increase in the activation of AMPK 

during hypoxia and low temperature. To my knowledge this is the only study 

showing AMPK activation through temperature stress. There are no published 

studies that address the AMPK levels in crabs, and none that investigate what 

changes occur in response to a drastic increase in environmental temperature.   
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Heat Shock Proteins 

Heat shock proteins (HSPs) are molecular chaperones that play an 

important role throughout normal cell life and as responders during stress. HSPs 

are a diverse group that vary, both in their genetic makeup, and molecular mass. 

The different families of HSPs are named according to their molecular weight in 

kilodaltons (i.e. heat shock proteins with a molecular mass around 70 kDa all 

belong to the HSP70 family) (Hochachka and Somero 2002). There are 7 

families that range in molecular mass from 10 - 110 kDa (Snyder and Rossi 

2004). Under normal conditions HSPs help to maintain proper folding and 

interactions of new proteins, as well as help with the correct placement of that 

specific protein within the cell. When the cell is stressed (i.e. in response to 

increasing temperatures, chemicals, hypoxia, etc…) proteins can be altered or 

denatured and heat shock proteins play a vital role in preventing aggregation, as 

well as, aiding in the refolding of the denatured proteins back to their functional 

shapes. During times of high environmental stress the synthesis of heat shock 

proteins increases, this is known as the heat shock response (Hochachka and 

Somero 2002). 

 During a heat shock response, there is an increase in the synthesis of 

HSPs, both those that are stress-induced, and those that are constitutively 

synthesized during normal cell life. Heat shock responses have been observed in 

almost all animals, except for two cold water fish that live in environments below 

0°C (Hoffman et al. 2000). However, these two Antarctic fish species lacking 
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HSPs live in an absolutely stable environment with temperature ranges of less 

than +/-2°C. Therefore, they do not need a response to changing temperatures. 

The entire heat shock response is still not completely understood. A cellular 

thermometer most likely triggers one of several heat shock transcription factors 

which induces the increase in HSP synthesis. Following this synthesis there must 

also be a regulatory cascade that causes the increase in synthesis to return to a 

normal range (Katschinski 2004). The heat shock response is not a fix for all 

stressful situations, because not all proteins that are damaged in response to 

stress are refoldable, which explains why long term environmental stress on an 

animal can still lead to permanent injury or death.    

 Induction of HSP synthesis can still occur during normal body temperature 

ranges in ectotherms (Hochachka and Somero 2002). When aquatic animals are 

being studied it is important to establish, whether or not, physical handling and 

experiments cause enough stress within themselves to initiate a heat shock 

response. Every species responds differently to various stressors, with 

responses that depend on their specific genetic makeup, development, 

environment, and even what family of HSP is being synthesized in response to 

the stress (Iwama et al. 2004). 

 HSP70 is one of the most abundant and highly conserved heat shock 

proteins that responds to stress in animals. They are important during increasing 

temperatures because they can bind to the hydrophobic surfaces of denatured, 

or partially denatured proteins. In this way they can help in the refolding of these 

proteins, and also help by keeping the open sites of the proteins from interacting 
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with other proteins or any other surfaces in their vicinity (Katschinski 2004).

 A recent study investigated the HSP70 expression in intertidal benthic 

organisms, specifically the anemone, Anthopleura elegantissim (Snyder and 

Rossi 2004). The aim of the study was to compare the animals internal 

temperature to the expression levels of HSP70. This study was unique in that all 

the experiments were done in the animals normal habitat, as oppose to in a 

laboratory. These organisms are found in the intertidal zone, where there are 

large daily temperature changes. The conclusion of the study was that on sunny 

days, with warmer temperature, changes the HSP70 levels were significantly 

higher than the HSP70 expression on foggy days with lower temperatures. They 

also found higher HSP70 levels in animals that were emerged and then 

immersed in water with the tides, compared to those that were immersed for the 

whole time. Another study, that explored HSP70 expression with respect to 

temperature, actually named the onset temperature for heat shock proteins as 

Ton (Tomanek 2005). The researcher mentioned that Ton varies among species, 

and can even change within a species as there are seasonal acclimations to 

changing environments. Since Ton indicates the time of stress, I am interested 

whether or not there is any correlation between the onset of heat shock response 

and the onset of anaerobiosis or the critical temperature.  

 

In summary, exposure of marine invertebrates to high temperature leads 

to failure of the heart, and an onset of anaerobic metabolism, despite the 

presence of sufficient oxygen in the environment. At critical temperatures cellular 
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energy is depleted and the circulatory system shows signs of failure. It is likely 

that the stress from high temperatures and hypoxia will activate the metabolic 

master switch, AMPK, to help prevent further ATP depletion. Additionally, thermal 

thresholds are described which are characterized by increased HSP70 protein 

levels. This leads to the question, whether at high temperatures, the heart fails to 

pump oxygenized hemolymph to the peripheral tissues, which then in turn leads 

to anaerobiosis in these peripheral tissues, or whether the heart receives 

deoxygenated hemolymph and then fails, due to anaerobiosis in the heart.  

 

The hypothesis for the current project is that failure of the heart is 

responsible for lack of sufficient oxygen in the peripheral tissues, causing the 

switch from aerobic to anaerobic metabolism at critical temperatures. In addition I 

hypothesize that the protective cellular mechanisms of AMPK activity and HSP70 

protein levels increase at the critical temperature.  

 

Materials and Methods: 

Whole animals (n=20) and semi-isolated hearts (n = 30) were incubated 

and exposed to temperature increases and decreases. Throughout the 

temperature changes the heart rate was monitored continuously. At specific 

temperatures the animals were sacrificed, and tissue samples obtained, to 

measure lactate, AMPK activity and HSP levels.  
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Animals 

Large male, Cancer irroratus, were caught with crab traps off the shores of 

the Mount Desert Island Laboratories in Salisbury Cove, Maine in June-July 2004 

and June-July 2005. They were kept in a flow through seawater tank in the 

Marine Science Center at the University of New England. The crabs were fed 

frozen fish twice a week. Complete tank cleanings were done when necessary.  

 

Temperature Incubations 

In order to determine the Tc of the animals they were exposed to a 

progressive temperature increase from 18˚C to approximately 32˚C over a 2-3 

hour time period (n= 40). Throughout the temperature increase the heart rate 

was monitored (see below). The temperature at which the maximum heart rate 

was reached was likely close to Tc, which gave me a range to work with during 

the next experiment. In the next set of experiments lactate measurements (see 

below) were made at 18˚C, 25˚C, 30˚C, and if the crab was still alive, at 32°C.  

Animals (n=10) were also exposed to a progressive decrease in 

temperature until about 5°C was reached, which was likely prior to the lower 

critical temperature, to get a better scale of the various heart rates. No lactate 

measurements were made at these low temperatures.  

I chose to identify a higher critical temperature, because it is easier and 

cheaper to heat something up than it is to cool it down, especially for animals 

who live in relatively cold environments to begin with.   
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At the indicated temperatures the described tissues were quick-frozen with 

pliers, pre-cooled in liquid nitrogen, and stored at -80˚C. Doing this preserved the 

metabolic state of the tissue, i.e. the lactate concentration and the AMPK activity.  

 

Magnesium Concentration in Crab Hemolymph 

The magnesium concentration in crab hemolymph was measured in order 

to accurately mimic the crab ringer in which semi-isolated hearts were placed. It 

is important to have a very accurate magnesium concentration because the 

amount of magnesium in the hemolymph correlates with activity levels of 

crustaceans, specifically it correlates to the cardiac activity. An incorrect 

magnesium concentration in the ringer solution would affect the heart rate 

(Walters and Uglow 1981, Frederich et al. 2000).  

Hemolymph samples were obtained with a needle inserted into the 

articular membrane of the legs of five male Cancer irroratus. Magnesium 

concentration was measured with a photometric assay (Pointe Scientific Inc.). In 

this assay a dye specifically binds to magnesium, therefore the measured 

absorbency at 530 nm correlates with the magnesium concentration.    

 

Semi-isolated Hearts 

In order to see if the limitations were the same for the heart and the whole 

animal, we compared the Tc for both. To make these comparisons directly with 

the circulatory system, I compared results from both whole animals and isolated 
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hearts of animals; the semi-isolated heart preparation described by Wilkens and 

McMahon (1994) was used. The cerebral ganglion of the animals were destroyed 

by cutting with scissors into the head of the animals. After that, the legs, the tail, 

the ventral side of the animal, and the interior organs (stomach, liver, 

testes/ovaries) were carefully removed until only the heart remained attached to 

the dorsal carapace (n = 30). The carapace, with the heart, was placed into a 

temperature controlled chamber filled with a solution that mimiced the ion 

composition of the animal's hemolymph (in mM: Na+ 460, K+ 10, Ca2+ 10, Mg2+ 

25, Cl- 490, HEPES 5, glucose 10, pH 7.4). For measuring the heart rate a 

photoplethysmograph (see below) was positioned below the semi-isolated heart. 

The semi-isolated hearts were exposed to the same temperature incubations as 

described for the whole animal.  

 

Pacing of Isolated Hearts 

The isolated hearts were paced to mimic the increasing heart rate seen in 

whole animals in response to increasing temperature. This was done using the 

same isolation process and buffer solution as described above. Once the heart 

was in the buffer, electrodes were placed in contact with the heart. The 

electrodes were attached to an electrical stimulator (BIOPAC Systems Inc., 

Goleta CA). The stimulation voltage was adjusted between 5 and 10 V, to ensure 

a continuous pacing of the heart. With each degree of temperature change the 

stimulator was set to the corresponding rate needed to mimic the average speed 
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of the whole animals’ hearts at that temperature. To determine the respective 

rate for the different temperatures a regression line was fitted through the whole 

animal heart rate data. The equation from that regression line (Y = 8.1437X – 

9.3418, Y= BPM X= Temperature °C) was used to calculate the rate in Hz 

needed to mimic the BPM at corresponding temperature (n= 15).  

 

Heart Rate 

To test if the circulatory system is what fails at critical temperatures, the 

animal’s heart rate was monitored, during all incubations, with a 

photoplethysmograph that was connected to a digital recording device (BIOPAC 

Systems Inc., Goleta, CA). The photoplethysmograph emits an ultraviolet (UV) 

light signal that penetrates the carapace of the animal and is then partially 

reflected by the heart. The amount of reflected light is then measured by UV 

sensors. As the heart beats, it changes shape, and therefore the amount of 

reflected UV light changes, depending on the shape of the heart. This change in 

reflection leads to a change in the signals detected by the digital recording 

device. The signal changes detected, equal the number of heart beats. This non-

invasive method was first described by Depledge (1984) and is superior to the 

other commonly used invasive method which requires implanting electrodes into 

the animal (e.g. Cumberlidge and Uglow 1977). When anaerobiosis sets in, the 

heart rate decreases which helped in determining the animal’s critical 

temperature.  
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Lactate Assay 

To determine when the switch from aerobic to anaerobic metabolism takes 

place, the lactate concentration was measured in tissue samples from the heart, 

claw muscle, and hepatopancreas. Lactate was assayed by a photometric 

enzyme test (Bergmeyer 1985). These tissues were easily accessible and 

represent tissues with different levels of metabolic activity. For this photometric 

test the tissue samples were ground under liquid nitrogen and the tissue powder 

then treated with perchloric acid to precipitate protein. The lactate concentration 

in the remaining sample was measured photometrically. The assay uses the 

reaction: lactate + NAD+ -> pyruvate + NADH. In this reaction one NADH 

molecule is generated for one lactate molecule. The reaction was catalyzed by 

the enzyme lactate dehydrogenase (LDH). The increase in NADH is measured 

by the photometer with a pH-stabilizing buffer, NAD+ and LDH, at a wavelength 

of 340nm (n = 2-5).  

The lactate concentration was normalized to the protein concentration in 

the extract measure by the Bradford method (Bradford 1976). 

 

AMPK levels 

The activation of AMPK was measured using a western blot. The same 

tissues were ground under liquid nitrogen and homogenized in a buffer 

containing phosphatase inhibitors to prevent dephosphorylation of AMPK. Fifty 
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µg protein of the homogenate (determined by the Bradford method, Bradford 

1976) was separated on an 8 % polyacrylamide/SDS gel at 200 V for 30 min. 

The proteins were transferred to a nitrocellulose membrane at 100 V for 1 hour. 

Primary rabbit anti pT172 antibodies (Upstate, NY) and secondary anti-rabbit 

antibodies (BIORAD) probed for a colorimetric signal, after blocking the 

membranes with 3 % non-fat dry milk. The membranes were scanned and the 

bands quantified using the NIH-image software (n=1-2). 

 

Heat Shock Protein 70 Levels 

The HSP70 protein levels were measured using the same tissue extracts 

and western blot methodology that is described above. The primary antibodies 

were mouse anti HSP70 (Sigma). The HSP70 sequence is highly conserved and 

therefore it is possible to use the mouse antibody in the crab (Frederich, 

O’Rourke, unpublished data) (n=1-2).  

 

Statistics 

The changes in lactate, HSP70 and AMPK activity between the three 

groups (whole animal, unpaced isolated hearts, paced isolated hearts) were 

compared by a one-way nonparametric Kruskal-Wallis ANOVA (GraphPad Prism 

Software). An unpaired t-test was used to determine the significance of changes 

that occurred within one group. A p-value of < 0.05 was considered significant.  

 

Results: 
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Magnesium 

The magnesium concentration in the hemolymph of male Cancer irroratus was 

measured as 25.4 + 2.6 mM, n=10 (mean + stdev). 

 

Heart Rate 

The heart rate of the whole animal steadily increased through out the 

temperature increase. The lowest heart rate, 49 + 21 BPM, occurred at 6.6°C, 

the resting heart rate at 18.6°C was 146 + 39 BPM, and the maximum heart rate 

reached was, 189 + 31 BPM, which occurred at 25°C. The heart rate increased 

from 6.6°C – 25ºC, with a Q10 of 2.1. Above 25°C the heart rate decreased until 

death, which occurred at 30°C (Figure 6). 

The heart rate of the isolated heart started at 32 BPM at 3.5°C, and 

increased to 73 + 8 BPM at 10°C. The Q10 between 3.5°C and 10°C was 5.5. 

Above 10°C the heart rate remained relatively constant until 31°C, resulting in a 

Q10 of 1.2. At the control temperature of 18°C the heart rate was 67 + 19 BPM, 

and the maximum heart rate reached was 90 + 10 BPM at 26°C. At 30.5°C the 

heart rate was 75 + 37 BPM and by 31°C the heart rate decreased  to 33 + 17 

BPM and than continued to drop, until death at 32°C (Figure 7).  

The heart rate for the paced, isolated hearts was calculated using the 

regression equation Y= 8.1437 X – 9.3418 (where X is temperature and Y is Hz), 

based on a line fitted as a linear regression through the whole animal data.  
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Figure 6: Heart rate (BPM) of whole male animals as a function of temperature (°C). A linear 
regression line was fitted to the whole animal data between 6.6°C and 25.4°C to find a Q10 of 2.1. 
(mean + stdev) (n= 5). 
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Figure 7:Heart rate (BPM) of male semi-isolated hearts as a function of temperature (°C). A linear 
regression line (Y = 5.365X + 12.036) was fitted through the data from 3.5°C-7.8°C to find a Q10 = 
5.5; a second linear regression line (Y = 1.2071X + 53.747) was fitted through the data from 
8.8°C-30°C to find a Q10 of 1.2. (mean + stdev) (n= 3-5). 
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Lactate 

In the heart of the whole animals, the lactate concentration, at the control 

temperature, 18°C, was 0.11 + .04 mmol/g protein. At 25°C, the lactate 

concentration increased to 0.22 + .08 mmol/g protein. At 30°C, the temperature 

of death, lactate concentration measured 1.15 + .32 mmol/g protein. There was 

no significant difference between the 18°C and 25°C but there was a significant 

difference between 25°C and 30°C (ANOVA, p < 0.05) (Figure 8, Table 3). 

At a control temperature ,of 18°C, the unpaced isolated hearts had a 

lactate concentration of 0.11 + .07 mmol/g protein. At 30°C the lactate remained 

the same, measuring at 0.10 + .04 mmol/g protein. The lactate concentration at 

death (32°C) was 0.52 + .31 mmol/g protein. There was no significant difference 

between any of the lactate concentrations (ANOVA, p < 0.05) (Figure 8, Table 3). 

 At a control temperature, of 18°C, the lactate concentration of the paced 

isolated hearts was 0.08 + .03 mmol/g protein. At 25°C, lactate concentration 

dropped to 0.06 + .05 mmol/g protein. The lactate concentration then increased 

to 0.34 + .14 mmol/g protein, with an increase of temperature to 30°C. At 32°C 

the lactate concentration was still 0.34. ANOVA statistics show no significant 

difference between any of the concentrations (Figure 8, Table 3). 
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Figure 8: Lactate concentration as a function of temperature (°C) in the whole animals, isolated 
unpaced hearts, and isolated paced hearts. (mean + stdev) (n= 2-5) 
 
 
Table 3: Summary of unpaired t-test results comparing different groups (p<0.05). (WA= whole 
animal, IUP= isolated unpaced, IP= isolated paced, 18, 25, 30 or 32 = temperature (°C)). 
 
 

groups p<0.05 

W18 vs. IUP18 No 

W18 vs. IP18 No 

IUP18 vs. IP18 No 

WA25 vs. IP25 No 

WA30 vs. IUP30 Yes 

WA30 vs. IP30 Yes 

IUP30 vs. IP30 No 

IUP32 vs. IP32 No 
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AMPK 

Western blot data (Figure 9) was put into relative units for comparisons to 

be made. In the whole animal, the AMPK activity increased, from a low activity of 

66 (relative unit) at 18°C, to a higher activity 255 (relative unit) at 25°C, and 

remained high at 30°C with 258 (relative unit) activity. In the paced isolated heart, 

the AMPK activity was very high at, 357 (relative unit) at 18°C, and than 

decreased at 25°C to 186 (relative unit), and than again at 30°C to 121 (relative 

unit). It increased to 265 (relative unit) between 30°C and 32°C. Due to the low n 

(1-2 per group) no statistical significance could be found (Figure 10). 

 

 

214

132

85

40

31

kDa M  18 18    25  25  30  30   18  18   25   25  30  32   32 ¼C

whole animal                       isolated heart

 

Figure 9: Western blot for AMPK showing a protein marker (M) with the respective molecular 
weight (kDa) and paced isolated heart samples as well as hearts from whole animal incubations. 
Arrow indicates AMPK bands at 65 kDa. 
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Figure 10: AMPK activity as a function of temperature (°C) in both the whole animal and isolated 

paced hearts. No significant differences were identified with the respective groups (p>0.05) 

(mean + stdev) (n=1-2). 

 

Heat Shock Proteins 

 In the whole animal, the HSP70 protein levels increased by a 2.2 

fold, from 2787 + 211 (relative unit) at 16°C, to 5994 + 1250 (relative unit) at 

25°C. From 25°C to 30°C, the protein levels decreased 1.8 fold, to 3275 + 400 

(relative unit) (Figure 12). In the isolated hearts, the HSP70 protein levels 

increased 1.8 fold, from 503 (relative unit) to 892 + 27 (relative unit) between 

18°C and 25°C, and continued to increase, 1.3 fold to 1197 (relative unit) at 

30°C.  The protein levels decreased between 30°C and 32°C, to 928 + 221 

(relative unit) (Figure 13). It is important to note, the whole animal relative unit 

and the isolated heart relative unit can not be directly compared. They depend on 

the individual western blot (Figure 11). Due to the low n in both groups (1-2 per 
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group) no statistical significance could be found within or between the two 

groups. 

 

 

  

 
 
 
 
 
 
 
 
 
Figure 11 Western blots for HSP70 showing a protein marker (M) with the respective molecular 
weight (kDa) and isolated paced heart samples (left), as well as hearts from whole animal 
incubations (right) . The arrows indicated the HSP70 bands at 85 kDa .  
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Figure 12: HSP70 protein of the isolated heart as a function of temperature (°C). No significant 
differences shown between protein levels (p>0.05) (mean + stdev) (n=1-2). 
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Figure 13: HSP70 protein of the whole animal hearts as a function of temperature (°C). No 
significant differences shown between protein levels (p>0.05) (mean + stdev) (n=2).  

 
Discussion: 
 

Critical temperatures have been observed in several invertebrate species, 

using different parameters as indicators, such as heart rate, ventilation rate, or 

the accumulation of various anaerobic end products (Zielinski and Portner 1996, 

Sommer et al. 1997, Portner et al. 1996, Frederich and Portner 2000, Portner et 

al. 1999, Sokolova and Portner 2003, Peck et al. 2002, Van Dijk et al. 1999, 

Shillito et al. 2006). This study shows that the high critical temperature of the rock 

crab, Cancer irroratus, can be defined using heart rate and lactate 

measurements, not only in the whole animals, but also in semi-isolated hearts. 

The results showed that the whole animal has an upper critical temperature in 

the range between 25 and 30°C. In contrast, the upper critical temperature of the 

semi-isolated hearts was between 30 and 32°C.  

 The biological processes, e.g. heart rate, of invertebrates increase within 

the physiological temperature range at a consistent Q10 between 2 and 3. In this 
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study the whole animals’ heart rates increased at a Q10 of 2.1. Ahsanullah and 

Newell (1971) calculated Q10 of 1.48-2.85 in a related species, the green crab, 

Carcinus maenas. Their study also demonstrated that the Q10 of one process can 

vary within species, depending on variation in gender, size, and weight which 

accounts for the range given. In this experiment all the subjects used were male 

and were about the same size and shape so changes were not seen.   

In this study the measured heart rates were also consistent with other 

decapod studies that investigated heart rate. The Carcinus maenas study by 

Ahsanullah and Newell (1971) measured heart rate at various temperatures with 

crabs of various sizes. Their results indicated that at 20°C the heart rate ranges 

from 60-120 BPM, at 25°C the heart rate range increased to 70-150 BPM, the 

majority of animals heart rates at this temperature were in the 100-150 BPM 

range, and at 30°C there was a decrease in the heart rate range, back down to 

50-100 BPM. Another study on Carcinus maenas (Cumberlidge and Uglow 1977) 

backs up these heart rate findings at  11°C. Their study also went as far as to 

characterize the various ranges of heart rate as resting, active, or elevated. They 

concluded that the resting heart rate range of Carcinus maenas is 25-45 BPM, 

the active level heart rate range was 50-75 BPM, and elevated levels are 

anything greater than 80 BPM. Similar heart rates were also reported by 

Frederich and Portner (2000) in the sea spider, Maja squinado, with a heart rate 

of approximately 50 BPM at 15°C and a peak in heart rate at approximately 105 

BPM at 30C. McGaw et al. (1995) reported a resting heart rate of 77 + 3 BPM at 

12° + 1° C in the Dungeness crab, Cancer magister.   
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In my study the heart rate of Cancer irroratus ranges from 49 + 21BPM at 

6.6°C, 146 + 39 BPM at 18.6°C, to a maximum heart rate of 189 + 31 BPM, 

reached at 25°C. These heart rates are higher than the heart rates reported in 

the above studies. A possible explanation for the differences in heart rate 

between the various species is their different marine habitats. The physiological 

temperature range for each species is different, therefore temperature will affect 

the heart rate of each species differently. One species may show only minor 

heart rate changes with temperature increase, because they are acclimated to a 

broader physiological temperature range. In contrast, others, like Cancer 

irroratus, will show large changes in heart rate with increasing temperatures, 

because they are acclimated to a narrower physiological temperature range.   

It is also important to note that the control temperature of 18°C is about 5 

degrees higher than the average daily temperatures they live in naturally. I used 

18°C as the control temperature because initially it was easier to maintain for 

long periods of time because I lacked sufficient cooling equipment to maintain a 

constant 12°C. In response, the reported heart rate at this temperature is slightly 

higher than their actual normal resting heart rate. However, because 18°C still 

falls within their physiological temperature range, and both the whole animal and 

isolated hearts were run within the same temperature range, it is still possible to 

compare the two in order to investigation the mechanisms of critical temperature.  

McMahon (1999) concluded that in the majority of cases, crustacean heart 

rate measurements are not a good measure of cardiac performance. His results, 

among others, have shown that in crustacean’s, cardiac output remains constant 
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even as the heart rate increases because the stroke volume adapts to maintain 

it. Cardiac output can be measured in crustaceans using a Doppler flow meter 

(Frederich et al. 2000, McMahon 1999, McGaw 2005, McGaw et al. 1995).  

However, these studies were done within the physiological temperature range 

and they were assessing the actual cardiac performance. My study focuses not 

on cardiac performance, or the physiological temperature range, but on the 

transition into the non-physiological temperature range. Various other studies 

(Zielinski and Portner 1996, Sommer et al. 1997, Portner et al. 1996, Frederich 

and Portner 2000, Portner et al. 1999, Sokolova and Portner 2003, Peck et al. 

2002, Van Dijk et al. 1999) have shown that heart rate is a good indicator for this 

transition into anaerobic metabolism which was clearly identified in my study at 

25°C.  

 Current work, on semi-isolated hearts, has found two significant 

differences between hearts in vivo and those in vitro, a lower actual heart rate in 

the isolated hearts and a lower Q10.  A decreased heart rate in semi-isolated 

hearts was discussed in several studies (McGaw et al. 1995, DeWachter and 

Wilkens 1996, Wilkens and McMahon 1994). Wilkens and McMahon (1994) 

assessed the cardiac performance of semi-isolated hearts of the crab, Carcinus 

maenas. Their results showed that immediately after isolation the resting heart 

rates are 15 – 25 BPM lower than that of the heart in vivo. They also found that 

15-20 min after isolation, heart rate decreased by another 10-20 BPM to a stable 

average of 49.7 +  2.8 BPM. Their semi-isolated hearts maintained this average 

heart rate for approximately four hours. Other mechanical properties, such as 
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systolic pressure, persist with slight decreases, or without any change during the 

four hour duration. McGaw et al. (1995) reported a decrease from an average of 

77 + 3 BPM to 57 + 3 BPM after isolation, in the Dungeness crab, Cancer 

magister, at 12° + 1°C.  DeWachter and Wilkens (1996) reported similar 

decreases in the Dungeness crab heart rate following isolation. Worden et al. 

(2006) reported a decrease in the heart rate of semi-isolated hearts in 

comparison to whole animal heart rates in the American lobster, Homarus 

americanus, but the degree of the decrease was significantly less than those 

observed in crabs. These respective differences between the crab and lobster 

are discussed later in context with Q10. The results of this study correlate with the 

patterns identified in the above studies. In vivo, the control heart rate at 18°C was 

146 + 39 BPM, whereas in vitro heart rates at 18°C were only 67 + 19 BPM. I 

performed all of the experiments in vivo and in vitro within a three hour time 

period to avoid having compromised results because of the decline in the stability 

of the semi-isolated hearts, which was reported to occur after four hours. One 

possible reason for the isolated hearts to beat slower, is because the ion 

composition in the buffer contains magnesium. Magnesium concentrations in the 

blood have been linked directly to activity, and therefore also heart rate (Walters 

and Uglow 1981). However, this is not the explanation in our study, because 

magnesium concentration in the crabs’ blood was carefully measured; results 

gave a concentration of 25.4 + 2.6 mM. This amount was used in the buffer 

solution and it is in the same range as magnesium concentrations found in 

related species, e.g. Carcinus maenus - 16.2 mM, Cancer pagurus - 26 mM 
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(Tentori and Lockwood 1990), and Cancer magister - 32 mM (Terwilliger and 

Brown 1993). One more likely reason for the decrease in heart rate in semi-

isolated hearts is the lack of circulating neurohormones, as explained in the 

introduction. Neurohormones play an important role in stimulating the heart. 

Another likely factor, is the decrease in stimulation of the heart directly from the 

central nervous system, since much of that has been destroyed in the isolation 

procedure. The only pacing mechanism that the isolated hearts still have 

completely intact is the cardiac ganglion (McGaw et al. 1995, Wilkens and 

Kuramoto 1998). 

 The second major difference in semi-isolated hearts, unpaced compared 

to in vivo hearts, is a change in the Q10. Unlike heart rate this is not universally 

seen in all species. Initially the Q10 of the isolated hearts is above normal, at 5.5, 

but between 10°C and 30°C Q10 is below normal, at 1.2. Q10s higher than normal 

have been observed in various species, when the temperature approaches 

extreme levels (reviewed by Cossins and Bowler 1987). However, the 

temperature range of 3.5°C – 7.8°C does not represent an extreme temperature 

for Cancer irroratus. Therefore this difference is likely caused by the isolation 

procedure. My study (above 10°C), and others, on various species have shown 

that there is little, if any, response in the heart rate to increasing temperatures, 

yielding Q10s around 1 (DeWachter and Wilkens 1996, Jury and Watson 2000). 

DeWachter and Wilkens (1996) Dungeness crab study reported that the Q10 of 

semi-isolated hearts remained under 2, and it continued to decrease with  

increased temperature, to a Q10 of 1 at higher temperatures. Jury and Watson 
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(2000) reported results, similar to those seen in the isolated hearts of crabs, in 

the American lobster, Homarus americanus. DeWachter and Wilkens (1996) 

explained that in whole animals, stroke volume and cardiac output decrease, with 

increasing temperatures, and the initial increase in heart rate is the systems’ way 

of compensating for the decrease in stroke volume and cardiac output. As the 

temperature continues to increase, some unknown extrinsic factors, e.g. 

neurohormones, continue to compensate by further increasing the heart rate. In 

semi-isolated hearts, the stroke volume and cardiac output still decrease in 

response to a temperature increase, and the heart rate still initially increases to 

compensate. However, in contrast, the heart rate of the semi-isolated hearts 

does not continue to increase, as in the whole animals, because the extrinsic 

factors discussed above are not available to the semi-isolated hearts, which is 

why they only show a small initial increase, and then remain constant throughout 

the temperature increase. The cardiac ganglion, the main pacemaker of the 

crustacean heart, seems to not be affected by temperature. The 

neurophsiological details are beyond the scope of the present study.  

Recently Worden et al. (2006) reported that the Q10 of semi-isolated 

hearts in lobsters remains close to the same as the Q10  measured in whole 

animals, which ranged from 1.0 to 3.5. Crabs and lobsters are both decapod 

crustaceans, however they evolved from different lineages, and vary in some 

aspects of their physiology, e.g. Frederich et al. (2000) discussed differences in 

magnesium levels in the blood and the varying effects it has on the cardiac 

function of various systematic groups. There are a number of differences 
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between the two species circulatory systems that could be responsible for their 

different heart rates in vivo, but never the less, all the crab studies support my 

findings of a low Q10 in most isolated hearts.  

These, largely different, heart rates of whole animals and semi isolated 

hearts made it difficult to conclude anything correlated to critical temperatures. 

Any difference in Tc could be attributed to different cardiac workloads. In order to 

determine if the whole animal and semi-isolated hearts really did have two 

different critical temperatures, I paced the isolated hearts to match the heart rate 

in the whole animals. I also used lactate data from the paced hearts to compare 

with the whole animals.  

Lactate accumulation indicates the onset of anaerobic metabolism. 

Therefore, measuring lactate at various temperatures allows us to identify the 

temperature range at which the switch from aerobic to anaerobic metabolism 

occurs, in turn, identifying the critical temperature. In this study, lactate 

concentration was measured in the heart muscle, as oppose to the more 

common measurements taken from the blood. With failure of the heart at Tc, 

blood is not circulating anymore, and therefore, lactate buildup occurs in the 

tissues. This makes correlating our data with others difficult, because commonly 

lactate concentrations are taken from the blood, which contains much less lactate 

than the muscles themselves. Lactate still proved to be a reliable indicator, 

because, at the control temperature of 18°C, both the hearts of the whole 

animals and the isolated hearts had the same low concentration, implying that 

both were using aerobic metabolism, and therefore there wasn’t any stress from 



 

 

43 

 

. 

. 

the isolation procedure that affected lactate concentrations. In the whole animals 

the lactate significantly increased between 25°C and 30°C. Also, at 30°C, or 

death of the whole animal, there was a significant difference in lactate 

concentrations between the heart of the whole animal and both the paced and 

unpaced isolated hearts. The lactate in the isolated hearts had still not increased 

significantly from the concentration at 25°C by 32°C, when the animals died. 

At the end of this study the AMPK and HSP data is preliminary because 

time and methodological constraints limited the number of replicates that could 

be run. Due to low n no statistical tests can be done accurately. Therefore, no 

statements about the significance of the differences seen are made. However, 

my data, in conjunction with current publications, still gives us clues into the use 

of these parameters when measuring critical temperatures. The preliminary 

AMPK activity and HSP levels both showed an increase between 18°C and 25°C 

in the whole animals. These results indicate that at 25°C the animal is stressed 

and attempting to compensate, by increasing ATP production, and decreasing 

ATP consumption, by increasing AMPK activity. The HSPs attempt to 

compensate by preventing denaturing and aggregation of proteins. An increase 

in AMPK activity due to temperature has been shown only in one vertebrate, the 

frog (Bartrons et al. 2004), but never before in an invertebrate. Further details, 

about AMPK activity, in invertebrates are necessary to determine if temperature 

induced hypoxia is the likely cause of an increase in AMPK activity in 

invertebrates. An increase in HSP levels has been shown in marine 

invertebrates, e.g. snails (Tomanek 2005). This study had similar results, an 
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increase, followed by a decrease of HSP70. The decrease in HSP levels in my 

study occurred between 25°C and 30°C.  

The preliminary data suggests that AMPK activity and HSP levels can be 

useful measures in determining the critical temperature of the whole animals. 

The HSP level data showed an increase at the same temperature as lactate, 

indicating that the Ton, described by Tomanek (2005), does correspond directly 

with Tc. The preliminary data for the isolated hearts seems to indicate that these 

parameters would not be useful in determining the Tc for isolated systems. It is 

possible that the stress of the isolation process causes unusual patterns of 

AMPK activity and HSP levels. Nevertheless, further experiments need to be 

done to utilize this data as part of my final results.   

 No other study, to my knowledge, has investigated critical temperatures of 

Cancer irroratus, therefore no direct comparison can be made to the critical 

temperature range I found, of 25-30°C. However, other studies have investigated 

critical temperatures in other marine invertebrates, and found critical 

temperatures ranging from 20-30°C; Van Dijk et al. 1999 (Zoarces viviparous and 

Pachycara brachycephalum), Sommer et al. 1997 (Arenicola marina), Frederich 

and Portner 2000 (Maja squinado). The species with low Tcs  were marine 

animals that live in the Antarctic and in the North Sea, therefore, it makes sense 

that their critical temperatures are lower than the rock crab, because they live in 

colder daily environments. The species at the top of that range are from the 

Mediterranean, and therefore have higher critical temperatures than the rock 

crab, because their daily environmental temperature range is higher. Other 
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studies have investigated changes of heart rate in response to temperature and 

observed drastic drops, but didn’t go as far as to state a critical temperature. One 

such study by DeWachter and Wilkens (1996) investigated heart rate in Cancer 

magister and found a significant decrease after 20°C, supporting my data for 

Cancer irroratus.   

 Several studies have also investigated lower critical temperatures, (see 

table 1 in the introduction). It is important to note that Cancer irroratus also has a 

low critical temperature, which most likely can also be identified through lactate 

accumulation. However it is difficult to measure the determining parameters, 

because, with a decrease in temperature, there is also a decrease in metabolism, 

and all other parameters. Therefore, the actual changes in heart rate and lactate 

concentration are small, making identification of low the critical temperature very 

difficult. This study was more interested in the mechanism of the setting of critical 

temperatures, which is most likely the same at both the low and high Tc. 

Therefore, the responsible system for setting critical temperatures can be 

identified, by investigating just the high critical temperature of a species. 

 In that context, it is important to note that the temperature increase these 

animals were exposed, to within a two hour time period, is much faster than any 

temperature increase that occurs in their natural environment. In the normal 

ocean environment temperature increases occur slowly, allowing the animals 

time to acclimate to the temperatures and adjust their physiological functioning 

range accordingly. These animals are exposed to seasonal temperature changes 

and some larger daily temperature fluctuations if they move through different 
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temperature ranges on the ocean floor. The fast artificial temperature increase 

for this study was chosen because we were not, primarily interested, in 

physiological range of functioning, but instead, in pushing them past their 

functional range, to identify what physiological process is responsible for setting 

this range. This fast temperature increase might shift the actual Tc, but still will 

allows us to identify the involved mechanisms and systems. I did not allow the 

crabs time to make any adaptations.  

 In conclusion, my results indicate that the whole animals, and the isolated 

hearts, have different upper critical temperatures. The whole animals have an 

upper critical temperature between 25°C and 30°C, this was indicated by the 

decrease in heart rate at 25°C, and the increase of lactate concentration in the 

heart between 25°C and 30°C. The isolated hearts proved to have a higher upper 

critical temperature than the whole animals. At 30°C, the whole animals lactate 

concentration was significantly higher than both the paced isolated, and unpaced 

isolated hearts. The isolated hearts did not only survive past 30°C, but they beat 

steady until 32°C, where the heart rate dropped and was soon followed by death. 

The unpaced isolated hearts had no significant changes in the lactate 

concentrations at any of the temperatures including 32°C, indicating that a switch 

to anaerobiosis had not occurred. The paced isolated hearts showed significant 

increases in lactate concentration between 18°C and both 30°C and 32°C, and 

between 25°C and 30°C. However, at 30°C and 32°C, the lactate concentration 

was the same, and the increase in lactate between 25°C and 32°C was not 

significant. With the compiled data, of both the paced and unpaced isolated 
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hearts, it appears the critical temperature might be slightly above 32°C, which is 

as high as seven degrees above that of the whole animal. 

 Finally, because the circulatory system of these animals is complex, and 

because heart rate can not be directly correlated with all parameters, this study 

lacks enough evidence to state that the circulatory system is, or is not, the 

limiting physiological process of critical temperatures. However, this study can 

strongly conclude, that the heart muscle itself is not the responsible mechanism 

for setting the critical temperatures, in the rock crab. The critical temperature of 

the heart muscle is higher than that of the whole animal. This means, that the 

lack of sufficient oxygen, and the subsequent onset of anaerobic metabolism, is 

not caused by the heart muscle’s lack of ability to pump the blood.  

Other factors within the circulatory system, e.g. oxygen carrying capacity 

of the blood, arterial flow, etc… might be responsible for setting Tc. It is also 

possible that failure of a completely different system involved in oxygen intake 

and delivery, e.g. the ventilatory system, is responsible for setting critical 

temperatures. If the ventilatory system is responsible, it would prevent uptake of 

oxygen from the environment into the hemolymph. Therefore, the heart switches 

to anaerobiosis, in turn not delivering oxygenated hemolymph to all other tissues. 

There is also evidence that AMPK activity does increase with temperature 

in Cancer irroratus.  This could be an indicating parameter for Tc, but only for 

whole animals, not isolated hearts. The isolation procedure itself appears to 

cause an increase in AMPK activity. HSP levels seems to also be an indicative 

parameter of Tc in the whole animal, but not in the isolated heart. More 
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experimentation needs to be done to statistically demonstrated the preliminary 

AMPK activity and HSP level data.  

 

As ectothermic animals, marine invertebrates are greatly affected by 

temperature changes in general. This is not only important with seasonal or daily 

changes, but also in the context of climate change and global warming. As this 

study has shown, marine invertebrates are able to tolerate a broad temperature 

range. However, the switch to anaerobiosis at Tc occurs within a very narrow 

temperature increment. This means, while one degree more or less within the 

physiological tolerance range has no major consequences, the same small 

temperature change, close to Tc, can lead directly to death of the animal. Those 

animals living close to the outer most limits of their physiological tolerance range 

will be most affected by temperature changes. Through this physiological 

mechanism, climate change and global warming can have a direct effect on the 

biogeography of marine invertebrates. Cancer irroratus can serve as a model 

species to investigate this physiological mechanism, which then can be applied 

to other, more commercially important species.  
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