
University of New England
DUNE: DigitalUNE

All Theses And Dissertations Theses and Dissertations

4-1-2011

Analyses Of Spinal Cord Mononuclear Cells
Following Spinal Nerve L5 Transection-Induced
Neuropathic Pain In Wild Type, CD4 Knockout,
And CD40 Knockout Mice
Holly Beaulac
University of New England

Follow this and additional works at: http://dune.une.edu/theses

Part of the Neuroscience and Neurobiology Commons

© 2011 Holly Beaulac

This Thesis is brought to you for free and open access by the Theses and Dissertations at DUNE: DigitalUNE. It has been accepted for inclusion in All
Theses And Dissertations by an authorized administrator of DUNE: DigitalUNE. For more information, please contact bkenyon@une.edu.

Preferred Citation
Beaulac, Holly, "Analyses Of Spinal Cord Mononuclear Cells Following Spinal Nerve L5 Transection-Induced Neuropathic Pain In
Wild Type, CD4 Knockout, And CD40 Knockout Mice" (2011). All Theses And Dissertations. 5.
http://dune.une.edu/theses/5

http://dune.une.edu?utm_source=dune.une.edu%2Ftheses%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dune.une.edu/theses?utm_source=dune.une.edu%2Ftheses%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dune.une.edu/theses_dissertations?utm_source=dune.une.edu%2Ftheses%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dune.une.edu/theses?utm_source=dune.une.edu%2Ftheses%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/55?utm_source=dune.une.edu%2Ftheses%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dune.une.edu/theses/5?utm_source=dune.une.edu%2Ftheses%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bkenyon@une.edu


1 

 

 

 

Analyses of Spinal Cord Mononuclear Cells Following Spinal Nerve L5 

Transection-Induced Neuropathic Pain in Wild Type, CD4 Knockout, and 

CD40 Knockout Mice 

  

An Honors Thesis Presented to  

The Faculty of the Department of Psychology 

University of New England 

 

in partial fulfillment of the  

requirements for the Degree of  

Bachelor of Science with Honors in  

Neuroscience 

 

by 

 

Holly Beaulac 

Undergraduate Honors Neuroscience Student 

University of New England 

Biddeford, Maine 

May 13, 2011 

 

 
Thesis Examining Committee: 
     Dr. Ling Cao, M.D., Ph.D. (Department of Microbiology, College of Osteopathic  

 Medicine, University of New England) 

     Dr. Geoff Ganter, Ph.D. (Department of Biology, College of Arts and Sciences, 

 University of New England) 

     Dr. Lei Lei, Ph.D. (Department of Biology, College of Arts and Sciences, University 

 of New England) 

     Dr. Joseph Simard, Ph.D. (Department of Chemistry, College of Arts and Sciences, 

 University of New England) 

     Dr. Glenn Stevenson, Ph.D. (Department of Psychology, College of Arts and Sciences, 

 University of New England) 

 

   



2 

Table of Contents 
 

 

I.  Abstract          3 

II. Introduction         4  

1. Neuropathic Pain        5 

2. Microglia         6 

3. CD40 and Neuropathic Pain       8 

4. CD4
+
 T Cells and Neuropathic Pain      9 

5. CD40-CD154 Interaction       10 

6. Murine Models of Neuropathic Pain      11 

III. Hypothesis and Specific Aims       12  

IV. Methods          13  

1. Experimental Design        13 

2. Animals         14 

3. Spinal Nerve L5 Transection       15 

4. Lumbar Spinal Cord Mononuclear Cell Preparation    16 

5. Flow Cytometry        17 

6. Statistical Analysis        19  

V.  Results          20 

1. Total Numbers of Microglia in the Lumbar Spinal Cord Post-L5Tx           20  

2. Total Numbers of Infiltrating Leukocytes in the Lumbar Spinal  26 

Cord Post-L5Tx  

VI. Discussion         30 

VII. Acknowledgments        34 

VIII. References         35 



3 

I. ABSTRACT 

 CD4
+
 T cells and CD40, highly expressed in activated microglia, along with 

microglia themselves have been demonstrated to contribute to mechanical 

hypersensitivity in a murine model of neuropathic pain, spinal nerve L5 transection 

(L5Tx).  This study investigated whether CD4 and CD40 mediate their effects by 

affecting spinal cord microglial responses and/or leukocyte infiltration into the spinal 

cord.  L5Tx was performed on wild type (WT), CD4 knockout (KO), and CD40 KO 

mice.  Mononuclear cells from the lumbar spinal cord were collected and the total 

number of microglia (CD45
lo

CD11b
+
) and infiltrating leukocytes (CD45

hi
) were analyzed 

in a time course study via flow cytometry.  In WT mice, L5Tx significantly increased the 

total number of microglial cells in the ipsilateral side of the lumbar spinal cord at day 3 

and day 7 post-surgery.  Similar changes in microglial numbers were observed in CD4 

KO mice at day 7 post-L5Tx but not in CD40 KO mice.  Post-L5Tx, WT mice displayed 

elevated numbers of infiltrating leukocytes in the ipsilateral side of the lumbar spinal 

cord.  Only minimal increases in infiltrating leukocytes were found in CD4 KO and 

CD40 KO mice.  The current data suggest CD40 may have greater involvement than CD4 

in peripheral nerve injury-induced neuropathic pain. 
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II. INTRODUCTION 

 The quality of life for many across the globe has been severely impacted by 

neuropathic pain, one of the most debilitating manifestations of chronic pain.  The 

prevalence rates of neuropathic pain from general population studies have ranged from 

estimates of 1-2% up to 8% worldwide (Smith and Torrance 2010).  However, such pain 

is often left untreated or mistreated.  As a result, long-term disability and depression are 

common as is the overuse of diagnostic services and procedures, hospitalizations, 

surgery, and inappropriate medication (DeLeo and Winkelstein 2002).  Opioids such as 

methadone or morphine are often prescribed to temporarily alleviate pain sensations by 

binding to opioid-specific receptors in the central and peripheral nervous systems to 

inhibit nociceptive activity (DeLeo and Winkelstein 2002).  While drugs like opioids are 

effective at reducing the perception of pain, they also are highly addictive and can cause 

severe withdrawal symptoms such as tremors, nausea, and anxiety.  Tricylclic 

antidepressants (TCAs) such as amitriptyline, imipramine, and nortriptyline have also 

proved effective at reducing neuropathic pain symptoms (Gelder et al. 2005).  However, 

in overdose, TCAs are cardiotoxic, prolonging heart rhythms and increasing myocardial 

irritability usually leading to death (Gelder et al. 2005).  By using animal models, the 

biological mechanisms underlying neuropathic pain may be better examined to help 

develop efficient medicinal treatment options accompanied by less detrimental 

consequences. 
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II.1 Neuropathic Pain 

To comprehend the features of neuropathic pain, it is first necessary to explain 

how pain is generated and identify its two main types (acute and chronic).  The induction 

of nociception occurs when specific stimuli evoke a response activating specialized areas 

on nociceptive nerve terminals. The terminals encourage electrical impulse (or action 

potential) conduction, along the nociceptive fiber to the spinal cord dorsal horn (Milligan 

and Watkins 2009).    The electrical signals then enter the brain from the spinal cord 

where the sensation may be perceived as a state of pain and expressed as either acute or 

chronic depending on the signals' duration.   Acute pain is an essential defense 

mechanism warning against existing or imminent damage to the physiological 

functioning of the normal body system (Tsuda et al. 2005).  In contrast, chronic pain is 

considered a reflection of atypical functioning of a pathologically altered nervous system, 

serving no established defensive or otherwise helpful function (Tsuda et al. 2005).  The 

duration of chronic pain lasts longer than any identifiable continuous injury or 

inflammation (Wang and Wang 2003).  One kind of chronic pain, identified as 

“neuropathic,” is initiated by a primary lesion or dysfunction expressed in the nervous 

system (Backonja 2003).  Neuropathic pain is often manifested when peripheral nerves 

are damaged through surgery, bone compression in cancer, diabetes, “channelopathies,” 

and autoimmune diseases (Tsuda et al. 2005, Campbell and Meyer 2006).  Common 

sensations reported by patients include those of burning, tingling, electric shock-like, or 

“pins and needles” (Galluzzi 2005).  These feelings may develop due to an altered or 

inhibited pain perception pathway when a damaged nerve cannot properly send electrical 
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signals from the peripheral nervous system (PNS) to the central nervous system (CNS) 

and vice-versa.  While nerve regeneration is often attempted, there is great risk the 

affected neurons will become sensitized and display low thresholds of excitability, 

thereby firing impulses more often.  Several symptoms of this agonizing state include 

spontaneous pain, or pain independent of a stimulus; hyperalgesia, an increased response 

to noxious stimuli; and allodynia, a pain response to normally innocuous stimuli 

(Moalem et al. 2004).  In several studies using the spinal nerve L5 transection (L5Tx) 

murine model of neuropathic pain, subjects displayed significant mechanical allodynia 

along with thermal and mechanical hyperalgesia for a duration of at least four weeks 

(Tanga et al. 2005, Cao et al. 2009a).  By using this model to mimic neuropathic pain, it 

was found that inflammation in the CNS and resulting neuroimmune activation, proposed 

to be by way of glia and infiltrating leukocytes, could influence behavioral 

hypersensitivity at least in animals (DeLeo et al. 2004).  Due to neuropathic pain's 

association with such a wide array of diseases and disorders, the study of the CNS's 

immunological responses to lesions/disruptions associated with neuropathic pain may 

provide the information required to develop improved avenues of treatment. 

 

II.2 Microglia 

When a nerve injury occurs, the resulting molecular and cellular changes may 

influence neuronal plasticity and anatomical reorganization throughout the peripheral and 

central nervous systems (Woolf and Salter 2000).  An injured CNS may use 

inflammation, an inherent immune response, to detect and rapidly react to microbial 
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invasion or chemical/physical lesions (Muzio et al. 2007).  Microglia, one type of glial 

cell derived from bone marrow, produce some of the first notable active immune 

responses (DeLeo and Yezierski 2001).  These cells limit nerve damage in a manner 

similar to that of tissue macrophages as both cell types are derived from monocytes.  

Microglia initiate CNS tissue repair for the clearance of apoptotic cells and toxic debris 

such as free-floating myelin, amyloid fibrils, and fragmented neurons (Muzio et al. 2007).   

 Microglia exist in two functional states:  surveillance and activation.  Microglial 

cells in healthy tissue allow their cell bodies to remain at rest while their fine branching 

processes undergo continuous rebuilding (Hanisch and Kettenmann 2007).  This limited 

motion is used to constantly scan their territory and prepare their receptors for adjacent 

neuronal/glial signaling (Hanisch and Kettenmann 2007).  An influx of infectious 

microbes (possibly projecting a specific ligand that can bind to receptors such as P2X4 

and toll-like receptor 4 (TLR4)), ATP released from dead cells, and serum factors leaking 

out into the extracellular environment resulting from a breakdown of the blood spinal 

cord/brain barrier or severe tissue damage (a disruption in signaling) may activate the 

microglia (Tsuda et al. 2003, Hanisch and Kettenmann 2007, Eroglu and Barres 2010).  

While surveillance microglia appear somewhat stationary, activated microglia are able to 

identify an injured site and accumulate there.  Here, the microglia proliferate, 

phagocytose dead/dying cells and debris, express activation surface molecules (such as 

major histocompatibility complex (MHC) class II, CD11b, B7.2, and CD40), and secrete 

soluble proinflammatory cytokines and chemokines upon the activation of TLRs 

(Sweitzer et al. 2002, Cao and DeLeo 2008a, Zhu and Paul 2008, Cao et al. 2009a).  
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While each of these actions appears beneficial for the healing and protection of damaged 

tissue, there is growing evidence to suggest that continued microglial activation may be 

detrimental to the elimination of neuronal pain signaling. 

 

II.3 CD40 and Neuropathic Pain 

As microglia are activated in the CNS, they become antigen-presenting cells 

(APCs) and display elevated CD40 expression (Kornbluth 2000).  CD40 is classified as a 

48kD cell surface receptor in the tumor necrosis factor (TNF) receptor superfamily that is 

activated by CD40 ligand (CD154) (Grewal and Flavell 1998).  Besides being present in 

microglial cell systems, CD40 is also expressed by B cells, macrophages, Langerhans 

cells, endothelial cells, and thymic epithelial cells (Togo et al. 2000).  It is known that 

CD40-CD154 ligation activates a series of microglial signaling pathways that include the 

release of nitric oxide (NO), the expression of cyclooxygenase-2, the secretion of 

chemokines/cytokines (IL-10, IL-12, TNFα, IFNγ, MCP-1), and increased antigen 

presentation (Matyszak et al. 1999, Tan et al. 1999, Jana et al. 2001, D’Aversa et al. 2002, 

Okuno et al. 2004, Townsend et al. 2005).  Increased CD40 expression is often observed 

in several CNS diseases including multiple sclerosis, Alzheimer's disease, amyotrophic 

lateral sclerosis, and HIV-1 encephalitis (Togo et al. 2000, Cao et al. 2009a).  Microglia 

expressing CD40 at sites of nerve damage are linked to the development of mechanical 

hypersensitivity in a neuropathic pain model (Cao et al. 2009a).  However, the exact 

mechanism underlying such CD40 association is not well understood. 
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II.4 CD4
+
 T Cells and Neuropathic Pain   

  In general, there are two major types of T cells, CD4
+
 and CD8

+
 T cells, with a 

ratio between these two groups at approximately 2:1.  While T cells, like microglia, 

originate in bone marrow, they become mature in the thymus before leaving to assist in 

adaptive immunity (Schwarz and Bhandoola 2006).  CD4
+
 T cells are the center of the 

adaptive immune response.  During an immune response, CD4
+ 

T cells differentiate into 

at least two subsets (type 1 and type 2 helper T cells) with different functional capabilities 

and cytokine profiles (Mosmann et al. 1986).  CD4
+
 T cells are able to help B cells make 

antibodies, influence the development of enhanced microbicidal activity by macrophages, 

recruit other white blood cells to sites of infection and inflammation, and, by producing 

proinflammatory cytokines and chemokines, coordinate extensive immune protection 

(Zhu and Paul 2008).  In several studies it has been shown that while T cells, particularly 

CD4
+
 T cells, attempt to gather more immunological support to respond to nerve injury, 

they actually contribute to the nociceptive hypersensitivity associated with neuropathic 

pain (Moalem et al. 2004, Cao and DeLeo 2008b, Costigan et al. 2009).  In Moalem's 

study (2004), the systematic adoptive transfer of type 1 helper CD4
+
 T cells (one sub-

group of CD4
+
 T cells) to nerve-injured nude rats reinstated allodynia.  These results 

were further supported by Cao and DeLeo's study (2008b) showing that attenuated 

allodynia in CD4 KO mice could be restored through the systematic adoptive transfer of 

CD4
+
 T cells.   

In addition, following peripheral nerve injury, CD4
+
 T cells tend to migrate 

toward areas of microglial activation suggesting a link between the infiltration of CD4
+
 T 
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cells and microglia (Cao and DeLeo 2008b).  It has been suggested that CD4
+
 T cells are 

able to enter the CNS through the blood-spinal cord barrier using leukocyte 

extravasation, a process involving rolling and later tight adhesion by immune cells 

(Gordh et al. 2006, Costigan et al. 2009).  These actions involve various proinflammatory 

cytokines and chemokines, eventually leading to endothelial transmigration (Costigan et 

al. 2009).  Due to the presence of ligand CD154 on the activated CD4
+
 T cells and their 

rapid trafficking into sites of degradation alongside activated microglia, it has been 

theorized that the CD40-CD154 interaction contributes to CD4
+
 T cell and microglia 

immune signaling. 

 

II.5 CD40-CD154 Interaction  

 The interaction of CD40 with its ligand CD154, a 34-39 kD surface protein 

primarily present on activated CD4
+
 T cells, allows for the development of the acquired 

immune response, including both humoral and cell-mediated immune responses 

(Quezada et al. 2004).  The CD40-CD154 interaction is associated with the release of 

several chemokines and cytokines which could potentially signal infiltrating leukocytes 

including T cells.  The pathway's influence on neuropathic pain manifestation has not yet 

been thoroughly investigated.  However, by determining the temporal and spatial 

relationship between  CD40
+
 microglia and infiltrating CD4

+
 T cells in a nerve-damaged 

section of the CNS, it may help to identify key signaling components of the CD40-

CD154 interaction that influence the progress of the chronic pain state.    
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II.6 Murine Models of Neuropathic Pain 

Over the years, several models of neuropathic pain have been developed in 

rodents to mimic chronic pain that later provokes extensive behavioral hypersensitivity, 

as experienced by humans (Wang and Wang 2003).  Both central and peripheral pain 

models have been shown to be effective in producing behaviors reflective of the 

neuropathic pain state.  Peripheral nerve injury-induced neuropathic pain usually involves 

manipulation (nerve ligation (clamping), cryoneurolysis (freezing), and transection 

(severance)) of selected peripheral nerves such as sciatic or spinal nerves (Wang and 

Wang 2003).  

The model of neuropathic pain utilized in the current study is the spinal nerve L5 

transection (L5Tx).  The L5Tx protocol is widely used based upon its inter-experimenter 

reliability through the surgical procedure.  This model has been shown to produce robust 

mechanical and thermal hypersensitivity (including both allodynia and hyperalgesia) as 

well as activation of both astrocytes and microglia in the lumbar spinal cord (DeLeo and 

Winkelstein 2002, Sweitzer et al. 2002).  Recently, it was demonstrated that there are 

significant increases of CD40
+
 microglia and infiltrating CD4

+
 T cells in the lumbar 

spinal cord post-L5Tx and that both microglial CD40 and CD4
+
 T cells contribute to the 

maintenance of L5Tx-induced mechanical hypersensitivity, with an earlier involvement 

of microglial CD40 than CD4
+
 T cells (Cao and DeLeo 2008b, Cao et al. 2009a). 
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III. HYPOTHESIS AND SPECIFIC AIMS 

 This research was designed to investigate the mediating effects of CD4 and CD40 

on L5Tx-induced microglial responses and leukocyte infiltration in the lumbar spinal 

cord.  It was hypothesized that L5Tx significantly increases the numbers of microglia and 

infiltrating T cells in the ipsilateral side of the lumbar spinal cord post-L5Tx in wild type 

(WT) mice, while reduced numbers of microglia and/or infiltrating leukocytes would be 

observed in CD4 KO and CD40 KO mice post-L5Tx.  The hypothesis was tested through 

two specific aims:  1) To determine total numbers of microglia present in the lumbar 

spinal cord over a specific time period post-L5Tx in WT, CD40 KO, and CD4 KO mice; 

and 2) To determine total numbers of infiltrating leukocytes present in the lumbar spinal 

cord of these genotypes over a specific time interval post-L5Tx.  In addition, both CD40 

and CD4 play their roles primarily in the maintenance phase of neuropathic pain in the 

L5Tx model of neuropathic pain (Cao and DeLeo 2008b, Cao et al. 2009a).  The 

involvement of microglia interacting with infiltrating leukocytes in the development of 

neuropathic pain can be further elucidated from this study.     
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IV. METHODS 

IV.1 Experimental Design 

 During previous studies, increased microglial CD40 surface molecule expression 

was observed at day 3 and day 7 post-L5Tx and the most significant leukocyte infiltration 

was seen to occur on day 7 post-L5Tx with CD4
+
 T lymphocytes as the main infiltrating 

type of cell (Cao and DeLeo 2008b, Cao et al. 2009a).  In the current study, mice of three 

genotypes (WT, CD40 KO, and CD4 KO) were used.  Three to five animals were 

randomly divided into either the L5Tx group or the sham surgery group.  At selected 

times (days 0, 1, 3, 7, and 14 post-surgery), lumbar spinal cord mononuclear cells were 

harvested, categorically pooled, and analyzed via flow cytometry using monoclonal 

antibodies (mAbs) against CD45 and CD11b.  CD45, a protein tyrosine phosphotase, 

regulates sarcoma kinases required for T and B cell receptor signal transduction.  It is 

expressed by all types of leukocytes, including microglia (Kung et al. 2000).  It has been 

established that CD45 can be used as a marker to distinguish infiltrating leukocytes from 

the CNS resident, monocyte-derived microglia by flow cytometry, with CD45
hi

 (high 

level of CD45 expression) representing infiltrating leukocytes and CD45
lo

 (low level of 

CD45 expression) indicating microglia (Badie and Schartner 2000, Ford et al. 1995, 

Sedgwick et al. 1991).  CD11b, a component of complement receptor 3 (CR3), is an 

antigen characteristic of mature bone marrow-derived myeloid cells including microglia 

(Prakash et al. 1998).  Thus, in this study, a low level of CD45 expression and positive 

expression of CD11b (CD45
lo

CD11b
+
) together are used to identify microglia and a high 

level of CD45 expression (CD45
hi

) is used to identify infiltrating leukocytes (Figure 1).   
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Figure 1. Experimental Design (Please see text for detail). 

 

IV.2 Animals 

 Mice were housed in groups of three, four, or five according to sex in standard 

isolation cages with food and water available ad libitum.  Cages were changed once a 

week and after each surgery to avoid contamination and prevent infection of surgical 

wounds.  The Institutional Animal Care and Use Committee (IACUC) at UNE approved 

all experimental procedures used in this research.  In this study, three types of mice were 

used.  Adult WT BALB/c mice were purchased from the National Cancer Institute (NCI, 

Frederick, MD, USA).  The animals were allowed to habituate for at least one week in the 

animal facility before use in experimentation.  Breeding pairs for BALB/c CD4 KO mice 
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were originally obtained from Dr. William Lee in the Wadsworth Center of the New York 

State Department of Health, bred in the Dartmouth-Hitchcock Medical Center, and are 

currently maintained in the UNE animal facility.  Breeding pairs for BALB/c CD40 KO 

mice were originally obtained from the Jackson Laboratory (Bar Harbor, ME, USA) and 

bred in the animal facility at UNE.  Mice were 8-10 weeks old upon the initiation of each 

experimental procedure.  Both CD4 KO and CD40 KO mice are immunocompromised 

due to the loss of molecules critical in eliciting effective adaptive immune responses.  In 

particular, CD4 KO mice lack mature CD4
+
 T cells (Ganta et al. 2004). However, 

possible changes in the numbers of CNS glial cells (including both microglia and 

astrocytes) have not been investigated previously.  Both male and female mice were used 

throughout the current study.  In previous studies, no differences in L5Tx-induced 

mechanical hypersensitivity were observed between the sexes in WT, CD4 KO, or CD40 

KO mice (Cao and DeLeo 2008b, Cao et al. 2009a).  Also, at the basal level, there were 

no differences in mechanical sensitivity among these mice. 

 

IV.3 Spinal Nerve L5 Transection (L5Tx) 

 Three to five WT, CD40 KO, or CD4 KO mice were randomly selected into L5Tx 

surgery, sham surgery, and naïve (no surgery) groups.  L5Tx and sham surgeries were 

performed, as previously described by Cao et al. (2008b), using aseptic techniques.  The 

animals were anesthetized with isoflurene (4% for induction and 2.5% for maintenance) 

delivered in oxygen at a flow rate of 70 vol/min.  Prior to the surgery for each mouse, the 

hair of the lower back was removed and the area was cleaned with betadine.  A 1-2 cm 
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long incision was made along the mid-line of the back over the L5-L6 vertebra area.  

Muscle fibers were pulled away from the L6 transverse process and both spinal nerves L4 

and L5 were exposed.  L5 was transected and a 0.5-1 mm piece of the severed L5 was 

removed to prevent the nerve from reconnecting.  For mice undergoing sham surgery, the 

L5 was only exposed and not transected.  The incision was flushed with sterile saline 

before closure.  The fascia and muscle layers were sutured using the soft silk 6-0 suture.  

The skin was closed with 3-0 sutures.  

 

IV.4 Lumbar Spinal Cord Mononuclear Cell Preparation 

 Prior to euthanization, the animals were massed and inspected for any unexpected 

abnormalities that may have developed following surgery or while held in the animal 

facility.  Mice were euthanized by CO2 asphyxiation and transcardially perfused with a 

0.1 M phosphate-buffered saline (PBS, pH 7.4; between 50 and 150 ml per mouse).  After 

decapitation, the spinal cord was harvested from each individual mouse.  The lumbar 

enlargement portion of the spinal cord (L4-L6) was isolated and separated into ipsilateral 

and contralateral (relative to injury) segments.  Lumbar spinal cord mononuclear cells 

were further prepared according to a previously published method (Cao and DeLeo 

2008b).  Lumbar spinal cord pieces from 3-5 animals (same treatment and same side of 

the lumbar spinal cord) were pooled together, homogenized in PBS, filtered through a 70 

µm cell strainer (BD Biosciences, San Diego, CA, USA) and pelleted through 

centrifugation.  In order to obtain mononuclear cells from the spinal cord tissue, Percoll 

gradients of 40% and 70% were used (800 g at 24°C for 40 minutes, without braking).  
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Cells below the 40% Percoll layer and above the 70% Percoll layer were collected.  The 

total cell number of each sample was determined by using a hemocytometer with Trypan 

Blue (Sigma, St. Louis, MO, USA) before staining for flow cytometric analysis.  

 

IV.5 Flow Cytometry 

 The collected mononuclear cells were labeled with mAbs for flow cytometric 

analysis following a published procedure (Cao and DeLeo 2008b).  To prevent non-

specific binding, cell surface Fc receptors were blocked with staining buffer (2% fetal 

bovine serum and 0.09% NaN3 in PBS) containing anti-mouse-CD16/CD32 (2.4G2, BD 

Biosciences).  After 30 minutes of incubation, combinations of fluorescence-labeled 

mAbs:  APC-anti mouse CD45 (clone 30-F11 eBiosciences) and PE-anti mouse CD11b 

(clone M1/70 eBiosciences) were added to each tube.  The cells were then incubated on 

ice for another 30 minutes.  The cells were washed twice with PBS and centrifuged at 

2000 g at 4°C for 5 minutes each.  All labeled cells were re-suspended in 1% 

formaldehyde/PBS and kept on ice until analysis.  All samples were analyzed using an 

Accuri C6 flow cytometer with CFlow software (Accuri Cytometers Inc., Ann Arbor, MI, 

USA).  Non-stained cells were included in each run as controls.  All files collected with 

the flow cytometer were further analyzed using the FlowJo 7.6 (tree Star, Sanford, NJ, 

USA).  During data analysis, total cell population was identified based on the FSC 

(forward scatter) vs. SSC (side scatter) plot of each sample (Figure 2 top panel).   FSC is 

mostly diffracted light from the cell and is proportional to cell-surface area or size; SSC 

is mostly refracted and reflected light and is proportional to cell granularity or internal 
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complexity.  As described in section IV.1 and in previous studies (Cao and DeLeo 2008b, 

Cao et al. 2009a), cells with low levels of CD45 expression and positive for CD11b 

(CD45
lo

CD11b
+
) were identified as microglial cells (Figure 2 lower left), and cells with 

high levels of CD45 expression (CD45
hi

) were identified as infiltrating leukocytes 

(Figure 2 lower right).  For each sample, the total numbers of microglial cells and 

infiltrating leukocytes were further calculated based on the respective percentages of 

these populations within the total cells of each sample (obtained via flow cytometric 

analysis) and the total number of cells of each sample (obtained via counting using a 

hemocytometer – See Section IV.4). 

 

 

 

 

Figure 2. Phenotypes of Lumbar Spinal Cord Microglia and Infiltrating Leukocytes.  

s 
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Mononuclear cells were isolated from pooled lumbar spinal cord tissue (3-5 mice per 

group) at days 0, 1, 3, 7, and 14 post-sham or L5Tx surgery.  Mononuclear cells were 

stained with mAbs, APC-anti mouse CD45 and PE-anti mouse CD11b to identify cell 

populations of interest via flow cytometric analysis.  An example of how each sample 

was analyzed is shown in Figure 2 using a sample collected from the ipsilateral side of 

the lumbar spinal cord of WT mice at day 7 post-L5Tx.  On the top, a typical FSC vs. 

SSC plot of each sample is shown and the total mononuclear cell population is identified 

as “Total cells”.  On the lower left side, “Total cells” are shown in the CD11b vs. CD45 

plot and microglia (CD45
lo

CD11b
+
) are identified.  On the lower right side, “Total cells” 

are shown in the SSC vs. CD45 plot and infiltrating leukocytes (CD45
hi

) are identified. 

 

IV.6 Statistical Analysis 

 The SigmaPlot 10.0 (Systat Software, San Jose, CA, USA) was used to graph the 

data and statistical analyses were performed with the SigmaStat 3.5 (Systat Software).  

One-way analysis of variance (ANOVA) was performed and followed by the Student-

Newman-Keuls (SNK) post hoc test.  All data are presented as mean ± SEM when 

applicable.  Statistical significance was defined at p < 0.05.  
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V. RESULTS 
 

 V.1 Total Numbers of Microglia in the Lumbar Spinal Cord Post-L5Tx    

 Activated microglia have been shown to proliferate and migrate to areas of injury 

to help phagocytose debris and produce several bioactive molecules (Langmann, 2007).  

To begin investigating the role of CD4 (particularly, CD4
+
 T cells) and CD40 in lumbar 

spinal cord microglial responses following L5Tx-induced neuropathic pain, an 

examination of total numbers of microglia in the lumbar spinal cord subsequent to both 

L5Tx and sham surgery in WT, CD4 KO, and CD40 KO mice was performed.  Adult 

male and female BALB/c mice with different genotypes (WT, CD4 KO, or CD40 KO) 

were subjected to either L5Tx or sham surgery.  Lumbar spinal cord mononuclear cells 

were harvested (pooled from 3-5 mice for each treatment) at specific time points post-

surgery and analyzed via flow cytometry.  Changes of the number of total mononuclear 

cells are shown in Figure 3.  L5Tx induced a general trend of increase in the total 

mononuclear cell number at days 3 and 7 in WT mice, particularly in the ipsilateral side 

of the lumbar spinal cord.   The data for the WT mice represent the average of at least 

three sets of experiments and no statistical significance was detected at this time.  

CD45
lo

CD11b
+
 populations were identified as microglial cells and the total number of 

microglia from each sample was calculated based on the total number of mononuclear 

cells collected from each sample (as illustrated in Figure 2 and detailed in Materials and 

Methods, and graphed in Figure 3).    As expected, a distinct, brief increase in the total 

number of microglia in the ipsilateral side of the lumbar spinal cord was observed at day 

3 (2079.78 ± 1383.30 cells) and day 7 (1707.71 ± 731.12 cells) post-L5Tx compared to 
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the mice subjected to the sham operation.  Throughout the study, the sham surgery did 

not induce a detectable increase of microglial numbers (Figure 4).  Preliminary statistical 

analyses with the data thus far from the WT mice using a two-way ANOVA and SNK 

post hoc test indicated a significant time effect (ptime = 0.013) and potential group 

difference (pgroup = 0.135). 

 Due to the limited available numbers of CD4 KO and CD40 KO mice, only one 

complete experimental set for each of these KO mice was performed.  The results suggest 

both CD4 and CD40 are involved in microglial responses following L5Tx.  In CD4 KO 

mice, increased numbers of lumbar spinal cord microglia in the ipsilateral side were 

observed only at day 7, not day 3, post-L5Tx compared to the sham surgery (Figure 5).  

This elevation appeared to be comparable to that of WT mice at the same time (WT = 

1707.71 ± 731.12 cells, CD4 KO = 3380.00 cells).  While in CD40 KO mice, the total 

number of microglial cells appeared to be less in naïve mice (left side = 189.07 cells, and 

right side = 95.22 cells) compared to that of WT (left side = 481.50 ± 243.50 cells, and 

right side = 669.34 ± 302.86 cells) and CD4 KO (left side = 469.96 ± 444.48 cells, and 

right side = 255.78 ± 200.22 cells) mice.  There was also no L5Tx-induced ipsilateral 

side-specific increase of total numbers of microglia (Figure 5).  Further, unlike WT and 

CD4 KO mice, in CD40 KO mice, a trend of increase in the total number of lumbar 

spinal cord microglia in both ipsilateral and contralateral sides was noticed in animals 

subjected to L5Tx at day 7 and day 14 post-surgery.  

 



22 

0

10000

20000

30000

40000

50000

#
 o

f 
to

ta
l 
m

o
n

o
n

u
c
le

a
r 

c
e
ll
s
 

p
e
r 

lu
m

b
a
r 

s
p

in
a
l 
c
o

rd

0

10000

20000

30000

40000

50000

N
ai

ve
 ip

si

N
ai

ve
 c

on
tr
a

D
ay

 1
 T

x 
ip

si

D
ay

 1
 T

x 
co

nt
ra

D
ay

 1
 S

h 
ip

si

D
ay

 1
 S

h 
co

nt
ra

D
ay

 3
 T

x 
ip

si

D
ay

 3
 T

x 
co

nt
ra

D
ay

 3
 S

h 
ip

si

D
ay

 3
 S

h c
on

tr
a

D
ay

 7
 T

x 
ip

si

D
ay

 7
 T

x 
co

nt
ra

D
ay

 7
 S

h 
ip

si

D
ay

 7
 S

h c
on

tr
a

D
ay

 1
4 

Tx
 ip

si

D
ay

 1
4 

Tx
 c

on
tr
a

D
ay

 1
4 

S
h 

ip
si

D
ay

 1
4 

S
h c

on
tr
a0

10000

20000

30000

40000

50000

A   WT

C   CD40 KO

B   CD4 KO

 

Figure 3:  Total numbers of mononuclear cells in the lumbar spinal cord post-L5Tx 

in WT, CD4 KO, and CD40 KO mice.  Mononuclear cells from pooled lumbar spinal 

cord samples (4 per treatment, per side) of each type of mice were collected and counted 

using a hemocytometer with trypan blue.  Total numbers of mononuclear cells per lumbar 

spinal cord (mean ± SEM) are presented.  In A, n = 3-4 per group; in B, for “Naïve” and 

“Day 14” groups, n = 2, and the rest, n = 1; and in C, n = 1 for all groups.  Tx = L5Tx, Sh 

= Sham, and Naïve = no surgery was performed; ipsi = ipsilateral side and contra = 

contralateral side.  For naïve mice, ipsi = left side and contra = right side.

Deleted: ¶
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Figure 4:  Total numbers of microglia in the lumbar spinal cord post-L5Tx in WT 

mice.  Mononuclear cells from pooled lumbar spinal cord samples (4 per treatment, per 

side) of WT mice were collected and analyzed via flow cytometry using mAbs against 

CD45 and CD11b.  A total of 4 independent experiments were performed and at least 3 

complete sets of data were collected.  Total numbers of microglia (CD45
lo

CD11b
+
) per 

lumbar spinal cord (mean ± SEM) are presented.  Tx = L5Tx, Sh = Sham, and Naïve = no 

surgery was performed; ipsi = ipsilateral side and contra = contralateral side.  For naïve 

mice, ipsi = left side and contra = right side. 
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Figure 5:  Total numbers of microglia in the lumbar spinal cord post-L5Tx in CD4 

KO mice.  Mononuclear cells from pooled lumbar spinal cord samples (3-5 per 

treatment, per side) of CD4 KO mice were collected and analyzed via flow cytometry 

using mAbs against CD45 and CD11b (for “Naïve” and “Day 14” groups, n = 2, and the 

rest, n = 1).  Total numbers of microglia (CD45
lo

CD11b
+
) per lumbar spinal cord (mean ± 

SEM) are presented.  Note that the same scale for the y-axis as that in Figure 4 is used in 

order to compare the data collected from mice with different genotypes.  Tx = L5Tx, Sh = 

Sham, and Naïve = no surgery was performed; ipsi = ipsilateral side and contra = 

contralateral side.  For naïve mice, ipsi = left side and contra = right side.   
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 Figure 6:  Total numbers of microglia in the lumbar spinal cord post-L5Tx in CD40 

KO mice.  Mononuclear cells from pooled lumbar spinal cord samples (3-5 per 

treatment, per side) of CD4 KO mice were collected and analyzed via flow cytometry 

using monoclonal antibodies against CD45 and CD11b (n = 1).  Total numbers of 

microglia (CD45
lo

CD11b
+
) per lumbar spinal cord are presented.  Note that the same 

scale for the y-axis as that in Figure 4 is used in order to compare the data collected from 

mice with different genotypes.  Tx = L5Tx, Sh = Sham, and Naïve = no surgery was 

performed; ipsi = ipsilateral side and contra = contralateral side.  For naïve mice, ipsi = 

left side and contra = right side.   
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V.2 Total Numbers of Infiltrating Leukocytes in the Lumbar Spinal Cord Post-L5Tx 
 

 Infiltrating leukocytes (primarily CD4
+
 T lymphocytes and macrophages) have 

been detected in the lumbar spinal cord following peripheral nerve injury and these 

infiltrating leukocytes have been associated with the development of neuropathic pain 

(Cao and DeLeo 2008b, Costigan et al. 2009).  To examine whether CD4 and CD40 are 

involved in the leukocyte infiltration of the lumbar spinal cord following L5Tx, an 

analysis of total numbers of lumbar spinal cord infiltrating leukocytes in WT, CD4 KO, 

and CD40 KO mice at selected times following either L5Tx or sham surgery was 

performed.  Flow cytometric data collected from the same samples in the experiment, as 

described in V.1, were used in this investigation.  CD45
hi

 populations were identified as 

infiltrating leukocytes and the total number of infiltrating leukocytes from each sample 

was calculated based on the total number of mononuclear cells collected from each 

sample (as illustrated in Figure 2 and detailed in Materials and Methods, and graphed in 

Figure 3).  In WT mice, a noticeable increase of infiltrating leukocytes was detected in 

the ipsilateral side of the lumbar spinal cord at days 3 and 7 post-L5Tx but not post-sham 

surgery (Figure 7).  Preliminary statistical analyses with the data from WT mice using a 

two-way ANOVA and SNK post hoc test indicated potential time effect (ptime = 0.115) 

and group differences (pgroup = 0.084).  In contrast, no significant increase of the numbers 

of infiltrating leukocytes was observed at either day 3 or day 7 post-L5Tx in CD4 KO 

mice (Figure 8).  Similarly, there is no detectable increase of leukocyte infiltration in 

CD40 KO mice post-L5Tx (Figure 9). 
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Figure 7:  Total numbers of infiltrating leukocytes in the lumbar spinal cord post-

L5Tx in WT mice.   Mononuclear cells from pooled lumbar spinal cord samples (4 per 

treatment, per side) of WT mice were collected and analyzed via flow cytometry using 

mAbs against CD45 and CD11b.  A total of four independent experiments were 

performed and at least 3 complete sets of data were collected.  Total numbers of 

infiltrating leukocytes (CD45
hi

) per lumbar spinal cord (mean ± SEM) are presented.  Tx 

= L5Tx, Sh = Sham, and Naïve = no surgery was performed; ipsi = ipsilateral side and 

contra = contralateral side.  For naïve mice, ipsi = left side and contra = right side.  
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Figure 8:  Total numbers of infiltrating leukocytes in the lumbar spinal cord post-

L5Tx in CD4 KO mice.  Mononuclear cells from pooled lumbar spinal cord samples (3-

5 per treatment, per side) of CD4 KO mice were collected and analyzed via flow 

cytometry using mAbs against CD45 and CD11b (for “Naive” and “Day 14” groups, n = 

2, and the rest, n = 1).  Total numbers of infiltrating leukocytes (CD45
hi

) per lumbar 

spinal cord (mean ± SEM) are presented.  Note that the same scale for the y-axis as that 

in Figure 7 is used in order to compare the data collected from mice with different 

genotypes.  Tx = L5Tx, Sh = Sham, and Naïve = no surgery was performed; ipsi = 

ipsilateral side and contra = contralateral side.  For naïve mice, ipsi = left side and contra 

= right side.  
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Figure 9:  Total numbers of infiltrating leukocytes in the lumbar spinal cord post-

L5Tx in CD40 mice.  Mononuclear cells from pooled lumbar spinal cord samples (3-5 

per treatment, per side) of CD40 KO mice were collected and analyzed via flow 

cytometry using monoclonal antibodies against CD45 and CD11b (n = 1).  Total numbers 

of infiltrating leukocytes (CD45
hi

) per lumbar spinal cord are presented.  Note that the 

same scale for the y-axis as that in Figure 7 is used in order to compare the data collected 

from mice with different genotypes.  Tx = L5Tx, Sh = Sham, and Naïve = no surgery was 

performed; ipsi = ipsilateral side and contra = contralateral side.  For naïve mice, ipsi = 

left side and contra = right side.  
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VI. DISCUSSION 

 In this study, the mononuclear cells from pooled mouse lumbar spinal cord (L4-

L6) sections were collected and stained with mAbs for the analysis of microglial and 

infiltrating leukocyte numbers in a mouse model of neuropathic pain, L5Tx.  The 

experiment thus far has indicated a general trend of activated microglial presence at the 

site of injury over a two week period across WT and CD4 KO but not CD40 KO 

genotypes.  A similar trend for the infiltrating leukocytes was seen in WT mice but not in 

the CD4 KO or CD40 KO mice.   

 As reported previously, an increase of total numbers of lumbar spinal cord 

microglia at days 3 and 7 post-L5Tx in the WT mice was observed (Cao 2009b).  This is 

attributed to an increase in the rapid proliferation and migration towards the site of injury 

(specifically, the ipsilateral side of the lumbar spinal cord) of activated microglia.  Earlier, 

it was demonstrated that both CD4
+
 T cells and microglial CD40 contribute to the 

development of L5Tx-induced mechanical hypersensitivity, particularly during the 

maintenance phase (Cao and DeLeo 2008b, Cao et al. 2009a).  Reduced total numbers of 

spinal cord microglial cells in both CD4 KO and CD40 KO mice following nerve injury 

suggest that both CD40 and CD4 can mediate L5Tx-induced mechanical hypersensitivity 

through activating microglia.  Interaction between infiltrating CD4
+
 T cells and 

microglia, which may be mediated through CD40 ligation by CD154 on CD4
+
 T cells, 

will be further examined.  It appears CD40 plays a greater role in the microglial 

activation than CD4 since an increased number of microglia was found at day 7 post-

L5Tx in CD4 KO mice, while no significant increase of microglial numbers was 
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observed at either day 3 or day 7 post-L5Tx in CD40 KO mice.  Moreover, a noticeable 

increase of microglial numbers in both ipsilateral and contralateral sides of the lumbar 

spinal cord at day 7 and day 14 post-L5Tx was observed in CD40 KO mice.  Although 

confirmation through further experimentation is necessary, this late increase may suggest 

the involvement of other factors in microglial activation.  Additionally, the microglial 

count for the CD40 KO mice maintained consistently lower values than those observed 

for the WT and the CD4 KO mice.   This indicates a potential intrinsic defect in 

microglial development may exist and could further contribute to the reduced 

hypersensitivity post-L5Tx in CD40 KO mice (Cao 2009a).   

 As expected, L5Tx induced a significant increase of leukocyte infiltration in WT 

mice in the ipsilateral side of lumbar spinal cord, which peaks at day 3 and day 7 post-

L5Tx.  Both CD4
+
 T cells and macrophages, particularly CD4

+
 T cells, have been shown 

to infiltrate into the spinal cord following peripheral nerve injury and contribute to the 

progress of neuropathic pain (Moalem et al. 2004, Cao and DeLeo 2008b, Costigan et al. 

2009).  Consistent with this, the data showed that CD4 KO mice (that lack CD4
+
 T cells) 

had significantly reduced numbers of infiltrating leukocytes following L5Tx.  The 

reduction of infiltrating leukocyte numbers in CD40 KO mice post-L5Tx further suggests 

that microglial CD40 is critical in leukocyte infiltration into the spinal cord.  Based on the 

previous observation by Cao et al. (2009a), 10-20% of activated microglia expressed 

detectable CD40.  Reduced CD40-mediated microglial activation and the resultant 

reduction of proinflammatory cytokine/chemokine production in CD40 KO mice are the 

most likely causes of the decreased leukocyte infiltration.  However, indirect effects from 
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the interaction between microglia and astrocytes or between microglia and neurons are 

also possible (Milligan and Watkins 2009).  These relationships may be further examined 

in future studies. 

Microglia appear to be one type of target cells for T cells upon their infiltration 

into the CNS (Costigan et al. 2009).  The temporal relationships observed between the 

microglial response and the infiltration of leukocytes support an interaction between 

microglial CD40 and infiltrating CD4
+
 T cells, possibly through CD40-CD154 ligation, 

following peripheral nerve injury.  The CD40-CD154 interaction has been shown to be 

involved in the inflammatory and neurotoxic pathways in Alzheimer's disease, multiple 

sclerosis, and HIV (Calingasan et al. 2002).  Whether CD40-CD154 ligation between 

microglia and infiltrating CD4
+
 T cells plays a role in the pathophysiology of peripheral 

nerve injury-induced neuropathic pain will be investigated in the future. 

 Within the collected mononuclear cells, significant numbers of cells are not 

microglia or infiltrating leukocytes (when numbers of total mononuclear cells shown in 

Figure 3, numbers of microglial cells in Figures 4-6, and infiltrating leukocytes in Figures 

7-9 are compared).  However, microglia and infiltrating leukocytes were suggested to be 

the major cell types within the mononuclear cells prepared using Percoll gradient 

(Ponomarev et al. 2004).  It is believed that astrocytes and certain groups of neurons were 

also harvested under this experimental condition.  Detailed phenotyping of mononuclear 

cells will be performed in the future to explain this observation. 

Based on the results thus far, besides the continuation of data collection for the 

current study, upcoming research may focus on the roles of CD40 and CD4 in other 
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aspects of microglial responses following L5Tx.  This could be performed using both in 

vivo and in vitro approaches.  For example, morphological changes, migration and 

proliferation of microglia, expression of selected surface molecules by microglia, and 

microglial cytokine/chemokine secretion can be examined.  Further, the interactions 

between microglia and astrocytes, microglia and neurons, CD4
+
 T cells and astrocytes, as 

well as CD4
+
 T cells and neurons, are areas warranting greater investigation.  It is known 

that there is a significant activation of astrocytes following peripheral nerve injury and it 

has been proposed that astrocytes are mainly involved in the maintenance of neuropathic 

pain (Milligan and Watkins 2009).  In addition, reduced astrocytic response was observed 

in CD4 KO mice 7 days post-L5Tx compared to WT mice (Cao and DeLeo 2008b).  

Therefore, it is not surprising that multi-cellular interactions can modify neuronal 

activities and contribute to the development of neuropathic pain following peripheral 

nerve injury.   

  In summary, the results suggest both CD4 (particularly CD4
+
 T cells) and CD40 

are involved in the development of L5Tx-induced neuropathic pain through the inhibition 

of lumbar spinal cord microglial activation and leukocyte infiltration into the spinal cord.  

CD40 seems to play a greater role in controlling microglial responses following L5Tx.  

Further elucidation of the underlying mechanisms could aid in the development of new 

drug targets for the treatment of peripheral nerve injury-induced neuropathic pain.    
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