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ABSTRACT
Epichromatin is identified by immunostaining fixed and permeabilized cells with particular bivalent
anti-nucleosome antibodies (mAbs PL2-6 and 1H6). During interphase, epichromatin resides
adjacent to the inner nuclear membrane; during mitosis, at the outer surface of mitotic
chromosomes. By STED (stimulated emission depletion) microscopy, PL2-6 stained interphase
epichromatin is »76 nm thick and quite uniform; mitotic epichromatin is more variable in thickness,
exhibiting a “wrinkled” surface with an average thickness of »78 nm. Co-immunostaining with anti-
Ki-67 demonstrates Ki-67 deposition between the PL2-6 “ridges” of mitotic epichromatin.
Monovalent papain-derived Fab fragments of PL2-6 yield a strikingly different punctate
“chromomeric” immunostaining pattern throughout interphase nuclei and along mitotic
chromosome arms. Evidence from electrophoretic mobility shift assay (EMSA) and from analytical
ultracentrifugation characterize the Fab/mononucleosome complex, supporting the concept that
there are two binding sites per nucleosome. The peptide sequence of the Hv3 region (heavy chain
variable region 3) of the PL2-6 antibody binding site strongly resembles other nucleosome acidic
patch binding proteins (especially, LANA and CENPC), supporting that the nucleosome acidic patch
is included within the epichromatin epitope. It is speculated that the interphase epichromatin
epitope is “exposed” with favorable geometric arrangements for binding bivalent PL2-6 at the
surface chromatin; whereas, the epitope is “hidden” within internal chromatin. Furthermore, it is
suggested that the “exposed” nucleosome surface of mitotic epichromatin may play a role in post-
mitotic nuclear envelope reformation.

KEYWORDS
acidic patch; bivalent
antibody; chromomere;
confocal; LANA (latency-
associated nuclear antigen
from Karposi’s Sarcoma
Herpesvirus); monovalent fab
fragment; nucleosome; STED

Introduction

The concept of epichromatin (i.e., the surface of chroma-
tin adjacent to the interphase nuclear envelope and on
the “outer” surface of mitotic chromosomes) is based
upon specific localization in immunostaining experi-
ments.1,2 Two mouse monoclonal antibodies (PL2-6,
obtained from spleen cells of an autoimmune mouse3;
1H6, obtained from mice immunized with liposomes
containing phosphatidylserine4) produce a characteristic
and reproducible staining pattern on fixed nuclei and
mitotic chromosomes, visualized in a wide range of spe-
cies spanning from human to plant cells.1,2

Ever since the discovery of epichromatin, the ques-
tions of what epitope these antibodies are “recogniz-
ing” and what might be its structural and functional
significance, have been a basis for speculation. At the

onset, given the wide range of species exhibiting the
epichromatin epitope, it seemed unlikely that these
antibodies are recognizing specific nucleotide sequen-
ces. More likely, given the demonstrated strong inter-
actions of PL2-6 with histones H2A, H2B and DNA,
but not with H3, H4 and DNA,3 and recognizing the
considerable evolutionary conservation of histones, it
is likely that PL2-6 is binding to highly conserved his-
tone epitopes of the nucleosome. Furthermore, an
electrophoretic mobility shift assay (EMSA) of isolated
Hela mononucleosomes titrated with varying amounts
of PL2-6 (or 1H6) clearly demonstrated that these
antibodies can bind to essentially all mononucleo-
somes; i.e., the epichromatin epitope is present on
most (or all) nucleosomes.5
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In an effort to understand the mechanism of selec-
tive epichromatin staining within the fixed and per-
meabilized cell (i.e., surface chromatin staining)
versus the general “universal” reactivity of PL2-6 (or
1H6) with nucleosomes on chromatin strands released
from swollen nuclei or with mononucleosomes by
EMSA, we have performed a papain digestion of PL2-
6 to generate monovalent Fab fragments. These
monovalent fragments were compared to the parent
bivalent PL2-6 IgG molecules employing immunos-
taining and biochemical methods. Unlike the bivalent
molecules, immunostaining with the PL2-6 Fab frag-
ments revealed a distinctive fine punctate (“chromo-
meric”) localization pattern throughout interphase
nuclei and along mitotic chromosomes. In addition,
Fab binding to mononucleosomes exhibited a two-
step shift by EMSA analysis, suggesting two binding
sites. We propose that there are two epichromatin
epitopes per mononucleosome and that, from the per-
spective of bivalent PL2-6, these binding sites are
“exposed” within the epichromatin region and “hid-
den” within the internal chromatin of fixed and per-
meabilized cells. Furthermore, we suggest, based upon
peptide sequence comparisons, that the epichromatin
epitope includes the nucleosome “acidic patch”6,
resembling the interactions of LANA, CENPC,
HMGN, and other proteins with nucleosomes.6-11

Results

Epichromatin Localization in Various Human Cell
Lines. Fig. 1 presents the PL2-6 immunostaining pat-
tern of interphase and mitotic HL-60/S4, K562,
GM-12878 and U2OS cells. It is clear, as described
previously,1,2 that the epichromatin epitope is con-
fined to the surface chromatin underlying the inter-
phase nucleus and to the outer surface of the cluster of
mitotic chromosomes. This pattern is conserved in
evolution, appearing similar in mouse, Drosophila
and tobacco tissue culture cells1, and in the amoeboid
form of Dictyostelium discoideum (Supplemental
Figure 1).

Super-resolution imaging of epichromatin immu-
nostaining. STED (stimulated emission depletion)
microscopy was performed on PL2-6 stained HL-60/
S4 interphase and mitotic cells. Fig. 2 presents a confo-
cal (A) versus a STED (B) image of an interphase
nucleus. The side-by-side comparison clearly illus-
trates the “thinner” epichromatin staining with STED

imaging, compared to confocal imaging. Since epi-
chromatin appears as a “layer” of staining, we mea-
sured the layer thickness at half-maximum on line
profiles perpendicular to the interphase epichromatin
surface. Data from a set of confocal and a set of STED
measurements of interphase epichromatin are pre-
sented in Fig. 2C and D. STED imaging yielded an
»5-fold increase in X/Y resolution and indicated that
PL2-6 staining is largely confined to a layer of surface
chromatin »76 nm thick. By contrast, the epichroma-
tin region of mitotic chromosomes appears to be more
“wrinkled” (Fig. 3), with ridges and valleys, compared
to the “smooth” epichromatin of interphase nuclei
(Fig. 2). A side-by-side comparison (confocal versus
STED) of a different mitotic chromosome cluster is
shown in Fig. 4. Line scans through the mitotic epi-
chromatin yielded an average thickness of »78 nm,

Figure 1. Immunostaining patterns on interphase nuclei and
mitotic chromosomes from various human cell lines, employing
mouse monoclonal PL2-6 antibody. The strongest immunostain-
ing is confined to the “outer” chromatin surfaces. Images were
collected using widefield microscopy followed by deconvolution
on DeltaVision microscope, as described previously1,2. Magnifica-
tion bar equals 10 mm.
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with a greater range of measurement values (Fig. 4C
and D). The greater range in thickness measurements
of mitotic epichromatin is likely due to the alternating
ridges and valleys at the surface.

A recent article presented evidence that the “cell
proliferation marker” Ki-67 is attached to all of the
surfaces of mitotic chromosomes, where it functions
as a “surfactant” to disperse the chromosome cluster.12

An immediate question, consequent to this observa-
tion, is: How does Ki-67 localization relate to PL2-6
on mitotic epichromatin? Co-immunostaining with
anti-Ki-67 and with PL2-6 was performed on unsyn-
chronized HL-60/S4 cells (Fig. 5A-C). It is quite clear
that Ki-67 is seen on all mitotic chromosome surfaces,
whereas PL2-6 staining is primarily confined to the
“outer” surfaces of the mitotic chromosome cluster.
At higher magnification (Fig. 5D-F), the separate
localization of Ki-67 and PL2-6 on the mitotic epi-
chromatin was observed. “Ridges” of PL2-6 (green)
were seen next to “valleys” containing Ki-67 (red).

Figure 2. Measurement of HL-60/S4 interphase epichromatin “layer” thickness using perpendicular line profiles through confocal (A)
and STED (B) microscopy images. Single line profiles are shown in (C); average values from sets of line profiles (N D 19) are presented
in (D). The magnification bar for (A, B) equals 2 mm. The average “layer” thickness (§ standard deviation) for interphase epichromatin
is: confocal, 278 § 33 nm; STED, 76 § 10 nm.

Figure 3. STED image of a mitotic cell stained with PL2-6. Note
the “wrinkled” appearance of the mitotic epichromatin (i.e.,
exhibiting ridges and valleys at the chromosome boundaries),
compared to the relatively “smooth” boundaries of interphase
epichromatin (Fig. 2). The magnification bar equals 5 mm.
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This experiment does not permit any conclusion as to
whether anti-Ki-67 and PL2-6 compete for the same
epitopes; but it does appear that there is a difference
between the “inner surface” and the “outer surface”
(epichromatin) of a mitotic chromosome cluster.

Previously, we presented immunostaining evidence
that PL2-6 (and 1H6) react with osmotically exploded
chromatin from nucleated Xenopus erythrocytes, sug-
gesting the concept that within internal chromatin the
epichromatin epitopes are “hidden”.5 To explore the
level of immunostaining resolution in spread chroma-
tin, we collected confocal and STED images of HL-60/
S4 cells exploded by exposure to 0.01xPBS, prior to
HCHO fixation and staining with PL2-6. An example,
comparing confocal with STED is presented in Fig. 6.
Measurements of “bead” diameters on the thin chro-
matin strands ranged from »120–175 nm (pixel size
was 25 nm). Each “bead” probably represents a cluster
of many nucleosomes. Immunostaining by PL2-6 of
the exploded chromatin supports that the

epichromatin epitope is present (but hidden) through-
out internal chromatin of the fixed intact nucleus.

Immunostaining by Monovalent Fab fragments
derived from PL2-6. In an effort to discern whether
antibody bivalency is essential for the surface staining
pattern by PL2-6 within interphase nuclei or on
mitotic chromosomes, monovalent Fab fragments
were prepared using immobilized papain (Pierce Fab
Micro Preparation Kit). The purified Fab fragments
were analyzed by 10% SDS-PAGE under thiol reduc-
ing conditions (Supplemental Figure 2) and clearly
demonstrated the fragmentation of H chains and the
integrity of L chains. Numerous preparations of PL2-6
Fab always yielded the same fragmentation pattern.
Immunoblot analysis of Fab fragments with total HL-
60/S4 acid-extracted histones, H2A/H2B and H3/H4
subfractions (Active Motif Histone Purification Kit)
indicated a strong reaction with H2A, weaker with
H2B and a possible trace reactivity with H4 (Supple-
mental Fig. 3).

Figure 4. Measurement of HL-60/S4 mitotic epichromatin “layer” thickness using perpendicular line profiles through confocal (A) and
STED (B) microscopy images. Single line profiles are shown in (C); average values from sets of line profiles (N D 52) are presented in (D).
The magnification bar for (A, B) equals 2 mm. The average “layer” thickness (C/¡ standard deviation) for mitotic epichromatin is:
confocal, 294 C/¡ 51 nm; STED, 78 C/¡ 21 nm.
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Immunostaining of undifferentiated interphase
HL-60/S4 cells with the Fab fragments yielded a dras-
tically different image than observed with the intact
bivalent PL2-6 antibody. Unlike bivalent PL2-6
(Fig. 7A), monovalent Fab (Fig. 7B) revealed a “punc-
tate” staining pattern throughout the interphase
nucleus. For a comparison, simultaneously staining
with bivalent rabbit anti-histone H1.5 demonstrated a
similar punctate pattern, whether being paired with
bivalent PL2-6 or monovalent Fab. The merged image,

combining Fab and H1.5 staining patterns indicates
only “weak” co-localization between these two epito-
pes. Immunostaining of mitotic HL-60/S4 cells with
monovalent Fab fragments revealed a punctate pattern
along the chromosome arms (Fig. 7C). Bivalent anti-
histone H1.5 also appeared punctate along the chro-
mosome arms. Merged images of Fab and anti-H1.5
for several computed sections (Fig. 7D) indicate some
co-localization (visualized as yellow granules), but co-
localization is clearly not perfect. Fig. 8 displays

Figure 5. Co-immunostaining of HL-60/S4 mitotic chromosomes with PL2-6 (green), anti-Ki-67 (red) and DAPI (blue). (A-C), magnifica-
tion bar equals 10 mm. (D-F), magnification bar equals 1 mm.

Figure 6. PL2-6 immunostaining of chromatin spilling out of HL-60/S4 cells, “exploded” with 0.01xPBS. Confocal (A); STED (B), with two-
fold enlargement of selected field. Magnification bar equals 2 mm.
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several serial sections along a mitotic chromosome
arm, imaged at higher magnification, illustrating
the level of partial co-localization between Fab and
anti-H1.5. The identity of these »200-300 nm punc-
tate structures cannot yet be defined. Because of this
uncertainty, we wish to call these granular structures

“chromomeres”, reminiscent of the punctate struc-
tures observed along mitotic chromosome arms in the
late-19th century.13,14 Studying the images shown in
Fig. 7 and 8, it is clear that some chromomeres are
stained with Fab (green), but not with anti-H1.5 (red);
some chromomeres are red, but not green. There are
three major histone H1’s in HL-60/S4 cells (i.e., H1.2,
H1.4 and H1.5)15; thus, it is not possible to say
whether some chromomeres are devoid of histone H1,
without more extensive biochemical and microscopic
analyses. In addition, a careful comparison of Fab
(green) with DNA (DAPI, blue) staining indicated
that strong Fab is frequently seen to correspond to
regions of weak DAPI staining. Likewise, strong DAPI
staining regions sometimes exhibit weak Fab staining
(Supplemental Fig. 4).

In summary, whereas the bivalent PL2-6 antibody
immunostaining reaction is primarily confined to the
surface of chromatin adjacent to the nuclear envelope
or at the “outer” surface of mitotic chromosomes,

Figure 7. Immunostaining patterns of bivalent PL2-6 IgG and monovalent PL2-6 Fab fragments. (A) An HL-60/S4 interphase nucleus
stained with bivalent PL2-6 (green) and anti-histone H1.5 (red). (B) An HL-60/S4 interphase nucleus stained with monovalent Fab
(green) and anti-histone H1.5 (red). (C) A single Z-slice from a mitotic HL-60/S4 cell stained with monovalent Fab (green), anti-histone
H1.5 (red) and DAPI (blue); the merged “red C green (RCG)” slice is also presented. (D) Various Z-slices of the merged RCG stack are
presented. For all images, the magnification bar equals 10 mm.

Figure 8. Immunostaining patterns of monovalent Fab fragments
on alternate sequential Z-slices along a mitotic chromosome arm,
revealing a radial “chromomeric” pattern. The top row is Fab
(green); middle row, anti-histone H1.5 (red). The bottom row con-
tains the merged “red C green (RCG)” slices. Chromomeres are
»200-300 nm in diameter. The magnification bar equals 2 mm.
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the monovalent Fab fragment localizes in punctate
chromomeres, distributed throughout the interphase
nucleus (excluded from nucleoli) and along mitotic
chromosome arms.

Monovalent Fab fragments derived from PL2-6
bind to mononucleosomes. Previous electrophoretic
mobility shift assays (EMSA) demonstrated that biva-
lent PL2-6 binds to “all” HeLa core mononucleosomes
(at appropriate molar ratios), leading to significant
electrophoretic retardation and some precipitation at
the origin wells in a 1% agarose gel.5 In the present
study, EMSA was employed to examine the interac-
tion of monovalent PL2-6 Fab fragments with HeLa
mononucleosomes. Binding and mobility retardation
was observed in these experiments, which also exhib-
ited a reproducible buffer concentration-dependent
effect on binding behavior (Fig. 9); no precipitation at
the origin wells was observed. When the mixtures
were examined in 1% agarose gels composed of
1xTBE buffer (Fig. 9A), the nucleosomes (normally
running approximately equivalent to the 0.5 kbp DNA
marker band) were retarded to a mobility slightly
slower than the 1.0 kbp DNA marker band. The
amount (but not mobility) of retarded mononucleo-
somes increased when more Fab was added; addition

of Fc fragments to mononucleosomes had no effect
upon mobility. When the 1% agarose gels were run in
0.5xTBE buffer, a significant change in binding behav-
ior was observed (Fig. 9B). At lower ratios of Fab/
nucleosome, a “complex” migrated with intermediate
mobility (»0.75 kbp DNA marker). At higher ratios,
the »0.75 kbp band diminished in intensity and the
>1.0 kbp band increased in intensity, suggesting a
two-step binding process. Parenthetically, in 0.5xTBE,
a band was seen at less than 0.5 kbp, which also disap-
peared with increased ratio of Fab/nucleosome, sug-
gesting binding of Fab to an incomplete or
conformationally altered mononucleosome. Examin-
ing this buffer concentration-dependent effect upon
Fab/nucleosome interaction and mobility, we were
reminded of earlier observations on the binding of
HMGN1 and 2 (previously called HMG-14/17) to
mononucleosomes.16,17 At that time, we demonstrated
that each of these proteins bound to two identical sites
on the core mononucleosome, showing a similar
“cooperative” binding pattern in higher ionic strength
buffer versus a stepwise “non-cooperative” binding in
lower ionic strength. By analogy to the interaction of
HMGN1 and 2 to the core mononucleosome, we sug-
gest that the Fab binding behavior (Fig. 9) implies two
binding sites (epitopes) per nucleosome (presumably
symmetrical around the nucleosome dyad axis).

Analytical ultracentrifugation studies were per-
formed on Fab/mononucleosome complexes in
1xTBE buffer (Fig. 10, at an approximate molar ratio
of 5/1; see EMSA image, Fig. 10C). Fig. 10A presents
the results of a sedimentation velocity experiment,
depicted as a distribution of sedimentation coeffi-
cients. At the peak of the distribution, the core mono-
nucleosome exhibited an s20,w equal to 10.2 S; the Fab/
mononucleosome complex exhibited an s20,w equal to
12.6 S, with a small amount of apparently non-com-
plexed mononucleosomes. Fig. 10B presents the
results of a sedimentation equilibrium experiment,
allowing estimation of the apparent molecular mass
(Mapp) for the mononucleosome (»197 kg/mol) and
for the Fab/mononucleosome complex (»281 kg/
mol). The complex is slightly less than the expected
Mapp for a nucleosome plus two Fab fragments (»300
kg/mol), possibly reflecting a small amount of “free”
mononucleosome.

In summary, the combination of EMSA and analyt-
ical ultracentrifugation methods are consistent with
the formation of a complex consisting of 2 Fab

Figure 9. Electrophoretic Mobility Shift Assay (EMSA) demon-
strating the binding of monovalent Fab fragments to HeLa mono-
nucleosomes (MN). (A) Titration in 1xTBE with an increasing input
molar ratio of Fab/mononucleosomes (mAb/MN) demonstrating
that at a sufficiently high ratio, almost all MN exhibit mobility
retardation; at comparable molar ratios, Fc fragments have no
effect. (B) Titration in 0.5xTBE with an increasing input molar ratio
(mAb/MN). Binding and electrophoresis in 1xTBE buffer produces
a “cooperative” binding pattern with two migrating bands; at
lower ionic strength (0.5xTBE) a “non-cooperative” binding pat-
tern is observed (i.e., a complex with intermediate retarded
mobility, presumably binding one Fab, analogous to HMGN bind-
ing16,17). Black bar denotes the position of the intact MN; “?”, the
position of incomplete or conformationally altered MN.

NUCLEUS 631



fragments bound to a single mononucleosome, which
is stable at moderate ionic strength (e.g., 1xTBE) in
the presence of a molar excess of Fab fragments.

The nucleosome acidic patch: a candidate epichro-
matin epitope. Mouse monoclonal antibody PL2-6
and its Fab fragment are clearly anti-nucleosome anti-
bodies. From the previous data, it seems likely that
there are two binding sites on each (and all) nucleo-
somes. The peptide sequences of the variable regions
of the PL2-6 H and L chains have been determined3

and deposited into the IMGT database (Hv: X60334;
Lv: X60341). Of particular interest is Hv3 (i.e., the H
chain third complementarity-determining region, or
“variable region”). The peptide sequence of PL2-6
Hv3 resembles comparable regions of anti-DNA anti-
bodies, even though PL2-6 does not bind to DNA.3 Of
particular interest, one peptide motif within PL2-6
Hv3 (..RLRS..) resembles peptide motifs of proteins
that have been shown to bind to the nucleosome
“acidic patch” (Fig. 11A).

The acidic patch6,8,9 is structurally defined by the
presence of 8 acidic amino acids (6 from histone H2A;
2 from H2B) at the junction of histones H2A and
H2B. There are two acidic patches per nucleosome,
symmetrically related by the nucleosome dyad axis. A
number of diverse proteins have been shown by X-ray
crystallography, NMR and model building to bind to
the acidic patch. No single peptide chain conforma-
tion within the various binding proteins satisfies the
conditions for maximum residue contact; different
proteins exhibit different peptide conformations in
their interaction with the acidic patch (see Fig. 46 and
Fig. 29, for representations of the diverse peptide fold-
ing on the acidic patch). It seems reasonable to suggest

that PL2-6 Hv3 can resemble LANA, CENPC or other
proteins in a similar interaction with the acidic patch.
PL2-6 has the additional complexity (and/or
advantage?) of having two peptide chains (H and L)
defining the antibody binding site. It is not possible to
decide which of the PL2-6 Hv3 motif residues (..
RLRS..) is most critical for interaction specificity; how-
ever, by analogy with LANA, one might predict that
the second arginine interacts with a triad of H2A
acidic residues (i.e., E61, D90 and E92) by forming
salt bridges.6 It is of interest that a “sister” monoclonal

Figure 10. Analytical ultracentrifugation of Fab/mononucleosomes (MN) complexes in 1xTBE buffer. (A) Distribution of the sedimenta-
tion coefficient (s20,w) for HeLa mononucleosomes (red, -Fab) and for a 5/1 molar ratio (blue, CFab). The peak values were: -Fab,
s20,w D 10.2 S; CFab, s20,w D 12.6 S. The distributions were fitted with Gaussian curves. (B) Equilibrium sedimentation determination of
apparent molecular weights (Mapp) for HeLa mononucleosomes (red, -Fab) and for a 5/1 molar ratio (blue, CFab). The measured values
were: -Fab, Mapp D 197 kg/mol;CFab, Mapp D 281 kg/mol. (C) EMSA in 1xTBE of the samples examined by analytical ultracentrifugation.
DNA markers: 0.5 and1.0 kbp. Samples: 0, MN; C, MN C Fab.

Figure 11. Peptide sequence comparisons. (A) The PL2-6 heavy
chain variable region 3 (“�”, Hv3) compared to various nucleo-
some acidic patch binding proteins. The second arginine (red R)
in the LANA (…RLRS…) sequence forms salt bridges with H2A
E61, D90 and E92.6 The yellow (…LDYW…) motif is a common
hydrophobic structural feature of many Hv3 regions. (B) Compari-
son of the Hv3 regions of PL2-6 and PL2-7. Both antibodies are
from the same mouse spleen and both show preferential binding
to H2A/H2B/DNA by ELISA.3 However, PL2-6 stains epichromatin
in the fixed intact nucleus, whereas PL2-7 stains throughout the
interphase nucleus.2 This may indicate the importance of the first
arginine (blue R) in the (…RLRS…) sequence. Other similarities
and differences are seen in the highlighted green sequences.
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anti-nucleosome bivalent antibody, PL2-7 (from the
same mouse spleen as PL2-6 and which gives similar
ELISA results [i.e., maximal binding to H2A/H2B/
DNA]3, but a different immunostaining pattern [i.e.,
punctate staining throughout the interphase
nucleus])2, exhibits a changed residue in the motif (..
RLRS.. becomes ..GLRT..) (Fig. 11B). The first arginine
in the LANA motif forms a salt bridge with H2B
E110.6 This amino acid residue difference supports
the argument that the epichromatin immunostaining
pattern depends upon the integrity of the (..RLRS..)
motif within PL2-6 Hv3 region. Although mAb 1H6
strongly resembles PL2-6 in terms of immunostaining
of fixed cells and immunoblotting against acid
extracted histones2, also with respect to EMSA and
ChIP-Seq results5, due to the absence of Hv and Lv
peptide sequence data, it is not yet possible to argue
that 1H6 may have the nucleosome acidic patch as a
candidate epitope.

Discussion

The present study is an attempt to define the proper-
ties of epichromatin (the surface of chromatin adja-
cent to the interphase nuclear envelope and the
“outer” surface of mitotic chromosomes), to infer the
characteristics of the epichromatin epitope and to sug-
gest a possible functional significance for epichroma-
tin. So far, epichromatin can only be identified by
immunostaining with two mouse monoclonal anti-
bodies of different origin (PL2-6 and 1H6).1,2 These
identifying antibodies yield similar immunostaining
images with cells of very diverse evolutionary origin
(i.e., human, mouse, Xenopus, Drosophila, Caeno-
rhabditis, tobacco, Arabidopsis and Dictyoste-
lium).1,2,5 It is very unlikely that common DNA
sequences across such a diverse range of species are
responsible for this common epitope. It is more likely
that common nucleosome features, which are highly
conserved by evolution, form the basis of the similar
immunostaining patterns.

Based upon a comparison between confocal and
STED imaging, it appears that the epichromatin epi-
tope is confined to a thin layer (» 76 nm; s, § 10 nm)
adjacent to the interphase nuclear envelope. The
immunostaining reaction with mitotic chromosome
surfaces yields a comparable (»78 nm) thickness with
greater variation (s, § 21 nm). Present data suggests
that this variable thickness at the surface of mitotic

chromosomes is a reflection of its “wrinkled” surface
(i.e., displaying ridges and valleys), compared to epi-
chromatin adjacent to the interphase nuclear envelope
(compare Figs. 2 and 4). A recent publication
describes the localization and functional significance
of Ki-67 bound to the surface of mitotic chromo-
somes12. Ki-67 acts as a surfactant, preventing the
cluster of mitotic chromosomes from collapsing on
itself, which results in defective mitotic chromosome
separation. In the present study, we show (Fig. 5) that
Ki-67 binds to all mitotic chromosome surfaces,
including the “outer” epichromatin surface, which is
highlighted by PL2-6 binding. Indeed, as demon-
strated by co-immunostaining with anti-Ki-67 and
PL2-6, Ki-67 appears to be interspersed between PL2-
6 staining (i.e., PL2-6 stains the “ridges”, Ki-67 is often
localized to the “valleys” of the mitotic epichromatin).

It appears that the epichromatin epitope is present
on all (or most) nucleosomes, as detected by immu-
nostaining hypo-osmotically “exploded” cells with
chromatin strands spilling out (Fig. 6). In addition,
both bivalent PL2-65 and (papain-derived) monova-
lent PL2-6 Fab fragments bind to “all” mononucleo-
somes, as assayed by electrophoretic mobility shift
assay (EMSA) (Fig. 9). The simplest interpretation for
the confinement of the epichromatin epitope to the
surface chromatin of fixed and permeabilized cells ver-
sus the presence of the epitope on “all” nucleosomes
is, that most epitopes are “hidden” within the interior
chromatin; whereas, many epitopes remain “exposed”
at the chromatin surface. This distinction between
“hidden” and “exposed” epitopes is especially clear,
when immunostaining with the bivalent PL2-6 or 1H6
antibodies.

Indeed, immunostaining with monovalent PL2-6
Fab fragments yields a surprisingly different picture,
compared to what is observed with the bivalent form
of PL2-6. The Fab fragments generate punctate stain-
ing (»200-300 nm diameter) throughout the inter-
phase nucleus (excluding nucleolar regions) and along
mitotic chromosome arms. Because we do not know
the structural basis of the punctate staining, we refer
to them as “chromomeres”, reminiscent of late 19th
Century classical microscopic observations.13,14 A
similar chromomeric pattern (with some degree of co-
localization) was observed during co-immunostaining
combining monovalent Fab with bivalent antibodies
against histone H1.5. Bivalent anti-H1.5 yields a simi-
lar punctate pattern during immunostaining of
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chromatin, as is observed with monovalent PL2-6 Fab
fragments. In principle, either bivalent or monovalent
antibodies can experience “hidden” or “exposed”
epitopes.

It is not clear what level of chromatin structure is
represented in the chromomeric pattern of Fab stain-
ing. The human diploid genome consists of »6 £ 109

bp (actually, HL-60/S4 is hypodiploid18). Assuming
200 bp/nucleosome, this calculates to »3 £ 107

nucleosomes per diploid nucleus. Assuming that
TADs (topologically associating domains or megabase
“globules”)19,20 contain »106 bp DNA, yields an esti-
mate of »6,000 TADs per diploid nucleus. We have
estimated the total numbers of Fab chromomeres
within diploid interphase nuclei and within tetraploid
metaphase groups of mitotic chromosomes, examin-
ing the total number of “spots” (corrected to diploid)
in the stack of Z-slices and varying the “threshold” for
each slice. The total number of spots/diploid as a func-
tion of threshold is shown in Supplemental Figure 5. A
video of an interphase nuclear stack stained with Fab
(at 20% threshold, Supplemental Video 1) displays
»2791 chromomeres/diploid. A video of a mitotic
stack at 20% threshold (Supplemental Video 2 [the
identical stack as shown in Fig. 7C and D]) displays
»1150 chromomeres/diploid. Clearly, the interphase
and mitotic chromomeres cannot correspond to
nucleosomes; more likely, we are visualizing higher-
order nucleosome clusters (possibly TADs, but they
are believed to be absent from mitotic chromosomes,
employing Hi-C technology21). At any threshold level,
the total number of mitotic chromomeres (corrected
to diploid) is considerably less than the total diploid
number of interphase chromomeres. Conceivably, this
reduction in apparent chromomeres during mitosis
could be due to decreased epitope “exposure”, to dis-
solution of the chromomere structure or to consolida-
tion of chromomeres.

The conception of chromatin as particulate struc-
tures (»0.5-1.0 Mbp DNA) within the hierarchy of
chromatin higher-order organization is not a new
idea. This conception is also intimately connected to
models of DNA replication foci.22-24 In a recent super-
resolution microscopy study of chromatin dynamics
within live interphase cells, evidence was presented
that chromatin is condensed into clusters of »600-
1000 nucleosomes (“compact domains”), which
exhibit coherent movement.25 The diameter of these
compact domains in live cells is »220 nm, which

shrinks to »160 nm following formaldehyde fixation.
Clusters of nucleosomes are also seen in mitotic chro-
mosomes, which shrink to a diameter of »140 nm fol-
lowing fixation. It seems very likely that our
“chromomeres” are equivalent to the reported “com-
pact domains”. If so, this correspondence suggests
that compact domains may have an enrichment of
“exposed” nucleosome acidic patches on their surfaces
and might be stabilized as a cluster (in part) by H1
histones.

The preparation of PL2-6 Fab fragments permitted
EMSA and hydrodynamic ultracentrifugation charac-
terization of the Fab-mononucleosome complex,
supporting the conclusion that there are two epichro-
matin epitopes per nucleosome. A comparison of pep-
tide binding motifs to the nucleosome acidic patch
(Fig. 11A), underscores the similarity of the PL2-6
Hv3 loop3 to established acidic patch binding proteins,
LANA, CENPC, HMGN and Sir3.6-8 A critical argi-
nine in LANA (R9, the second R in ..RLRS..) has been
shown to participate in salt bridges with histone H2A
E61, D90 and E92. The other arginine of the binding
motif (R7) shows a salt bridge with H2B E110. These
interactions suggest an analogous structural model for
the PL2-6 Hv3 loop interacting with the nucleosome
acidic patch.

A difficulty with making a strict analogy between
PL2-6 Hv3 and the acidic patch binding proteins is that
PL2-6 is composed of both H and L chains; whereas, the
other acidic patch binding proteins are binding as single
peptide chains. There exists the distinct possibility that
the L chain can modulate the binding specificity and
interaction strength of PL2-6 Hv3 with the epichroma-
tin epitope. In fact, this effect of L chain modulation has
been clearly established with anti-DNA antibodies. It
has been known for many years that the Hv3 region of
anti-DNA antibodies displays an enrichment of arginine
residues.3,26-28 In one example of an anti-DNA antibody
(A52), with an Hv3 loop sequence that strongly resem-
bles PL2-6 (Supplemental Fig. 6), the Fab fragment has
been crystallized and the 3D structure solved to 1.62
A
�
.29 By analogy to the crystal structure of A52 Fab,

Fig. 12 presents a speculative model of the PL2-6 Fab
fragment (model generated by Dr. Robyn Stanfield, The
Scripps Research Institute, La Jolla, CA), highlighting
three arginine’s on the PL2-6 Hv3 loop and one arginine
on the L chain. It is now clear that certain “editor” L
chains can “diminish or veto” the anti-DNA affinity for
certain antibodies that have a high arginine content in
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the Hv3 region.30 PL2-6 shows no binding to DNA
(single- or double-stranded).3 It is conceivable that PL2-
6 may be a combination of anti-DNA H chains, modi-
fied by the L chains to prefer to bind to the nucleosome
acidic patch. In fact, a different anti-DNA antibody
(3H9) has been demonstrated to bind to chromatin,
possesses an essential arginine (R96) in the Hv2 loop,
and has been suggested to bind to the nucleosome acidic
patch.31 Furthermore, 3H9 has been demonstrated to
bind to phosphatidylserine (with a loss of anti-DNA
activity) following conversion of an Hv arginine to a gly-
cine.3233 This is of interest, since we have reported that
an anti-phosphatidyserine antibody (1H6) binds to
mononucleosomes and stains epichromatin.2 It is clear
that Hv arginine content and positions and “editor” L
chain properties can modulate the binding properties of
anti-DNA, anti-chromatin and anti-phospholipid anti-
bodies in complex ways. Unfortunately, no amino acid
sequence data is currently available for mAb 1H6, pre-
venting sequence comparisons to PL2-6 and other anti-
bodies of interest.

Assuming that the epichromatin epitope includes the
nucleosome acidic patch, one can speculate on the possi-
ble differences between the epitope “hidden” and
“exposed” states. Since there is evidence that the N-ter-
minal tail of histone H4 (from an adjacent nucleosome)
can interact with the acidic patch6, and interphase epi-
chromatin is at the surface (i.e., between internal chro-
matin and the inner nuclear membrane), the amount
and distribution of H4 tails should be quite different on
both sides of epichromatin. In addition, molecular simu-
lation studies indicate that acetylation of a lysine (K16)
on the N-terminal tail of histone H4 should weaken
interactions between H4K16 and the acidic patch.34 It is
not known if H4K16Ac is enriched within the epichro-
matin region. Besides the histone H4 tail, other nuclear
acidic patch binding proteins (e.g., HMGN1 and 2) may
have a differential nuclear distribution which might also
be preserved by formaldehyde, maintaining the distinc-
tion between the “hidden” and “exposed” epitope states.

Why does the bivalent PL2-6 antibody immunos-
tain so differently than the papain-derived monova-
lent PL2-6 Fab fragment? Conceptually, there are, at
least two antigenic structural parameters that might
influence the apparent intensity of the immunostain-
ing reaction with bivalent antibodies, the concentra-
tion of the epitope and the geometric arrangement of
the epitopes. Monovalent Fab fragments should be
less sensitive than bivalent PL2-6 to the geometric

arrangement. The unique importance of epitope geo-
metric arrangement to the bivalent antibody involves
the concept of “avidity”, which is defined as the “abil-
ity to simultaneously bind two physically linked anti-
gens….by using the two identical combining sites
located at the tips of their Fab (antigen-binding frag-
ments) arms”.35 Avidity is essentially the association
constant of the bivalent antibody. Modeling studies36

have clearly shown that avidity is a function of the 2D
planar epitope “surface concentration” (s). As s

increases, “bivalent binding dominates because there
are ample opportunities for the second Fab to bind
through the fast exploration of a reduced volume.
Concomitantly, the number of monovalent bound
antibodies decreases as s increases.”36 We suggest that
the epichromatin epitope (i.e., presumably, the acidic
patch) is exposed at a high surface concentration and
with “acceptable” geometric arrangement, which col-
lectively favor the binding of bivalent PL2-6. Internal
chromatin is assumed to consist of hidden epitopes
and scattered exposed epitopes, which are sterically
more favorable to monovalent Fab binding and less
favorable to the bivalent PL2-6. Acceptable geometric
arrangements of the epichromatin epitope are defined
by the structural parameters of the bivalent IgG mole-
cule (i.e., distance between the antibody binding sites
on one IgG, »15 nm; flexible and rotatable joints
between the two Fab regions and the Fc region; dis-
tance between the joints and the Fab binding site,
»7 nm), and by those of the nucleosome and the ori-
entations of the acidic patch. Furthermore, the IgG
molecule has a dyad axis relating the orientation of

Figure 12. Model of PL2-6 Fab fragment constructed by Dr.
Robyn Stanfield (The Scripps Research Institute). The Hv3 region
(blue) displays three R residues; the Lv1 region (red), one R resi-
due in the antibody binding site. The hydrophobic yellow (…
LDYW…) motif is also indicated.
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the two binding sites, an additional constraint upon
the orientations of suitable epitopes. Consequently, we
propose that difference in epitope geometric arrange-
ments is a major factor in confining epichromatin
immunostaining to the surface of chromatin.

In a previous publication,5 we demonstrated that
ChIP-enriched epichromatin from human HL-60/S4
cells (undifferentiated, granulocytic and macrophage
forms) has unusual DNA sequence properties: 1) only
»4% of the genome is enriched. 2) retrotransposon
Alu is enriched »10 fold above the average genome
density. 3) epichromatin enrichment is discontinuous
with chromosome-specific distributions. We are pres-
ently lacking comparative enrichment studies from
other cell types and/or different species. Since Alu is
restricted to primates, enrichment studies in more dis-
tant species than primates, cannot possibly yield the
same DNA sequence properties for epichromatin.
Even so, essentially identical immunostaining patterns
with PL2-6 are obtained with a large variety of cell
types. We must conclude that exposure of the epichro-
matin epitope adjacent to the cell nucleus or at the
surface of mitotic chromosomes is not a direct conse-
quence of the underlying DNA sequence, but rather,
to the exposure and geometric arrangement of nucleo-
some (acidic patches) within the 3D nuclear or mitotic
chromosomal architecture.

Finally, we speculate on the adaptive advantage of
maintaining nucleosomes with “exposed” chemical
properties (e.g., acidic peptide residues) on chromo-
somal surfaces (in particular, mitotic epichromatin).
The “wrinkled” mitotic epichromatin may be a mech-
anism for increasing the density of “exposed” chroma-
tin epitopes. We suggest that “exposed mitotic
nucleosomal surfaces” might be attractive to inner
nuclear membrane proteins and their adaptors (e.g.,
LBR, LAP2b, Emerin, MAN1 [BANF, a LEM adap-
tor37]) or to membrane phospholipids, which could be
attracted to unaffiliated histone basic tails that extend
out from the surface nucleosomes. These potential
interactions might facilitate post-mitotic nuclear enve-
lope reformation.38,39 In the HL-60/S4 cell system, epi-
chromatin has a high nucleosome density, intersects
regions of high DNase I sensitivity and exhibits a
paucity of many histone post-translational modifica-
tions.5,40 Perhaps mitotic epichromatin presents an
“open” and less modified chromatin structure facing
the telophase-adhering endoplasmic reticulum, facili-
tating rapid membrane attachment and growth.

Dedication

This article is dedicated to the memory of J€org Lan-
gowski, who died on May 6, 2017. J€org was enthusias-
tic about science, was generous, stimulating and
critical, fought for honesty, and was a true friend. He
is greatly missed.

Methods

Cells, Antibodies and Papain-digestion. Cultivation of
HL-60/S4 has been described previously1. K562 and
U2OS cells were maintained as described by ATTC
(Manassas, VA); GM12878, as described by the Coriell
Institute for Medical Research (Camden, NJ). Mouse
monoclonal PL2-6 was originally developed and tested
in 1992.3 The initial use of PL2-6 to identify epichro-
matin was published later.1 PL2-6 was employed at a
1:100 dilution. Papain digestion of mAb PL2-6 was
achieved with a Pierce Fab Micro Preparation Kit
(Thermo Scientific #44685). The monovalent Fab frag-
ments were employed at a 1:25-1:50 dilution. For con-
focal imaging of PL2-6 and Fab, an Alexa 488 donkey
anti-mouse IgG (HCL) antibody was used at a 1:1000
dilution. For STED microscopy of mAb PL2-6, we
employed, as a secondary antibody, Abberior STAR
488 goat anti-mouse IgG at a dilution of 1:100. Rabbit
anti-histone H1.5 was purchased from Abcam
(ab18208) and used at 1:500; rabbit anti-Ki-67
(ab15580) was used at 1:1000. In these cases, an Alexa
568 goat anti-rabbit IgG antibody was used at a 1:1000
dilution.

Nucleosomes. HeLa cells were maintained in sus-
pension culture in RPMI 1640 medium without phe-
nol red, supplemented with 10% fetal calf serum.
Isolation of nuclei and fractionation of chromatin into
mono- and oligonucleosomes was performed as previ-
ously described41. Fractions containing primarily
mononucleosomes were dialysed overnight against
20 mM Tris, 50 mM NaCl (pH 7.4) and concentrated
in Centricon cartridges (Centricon, MA). SDS and
native polyacrylamide gel analysis were used to deter-
mine whether the mononucleosomes were truncated
to core particles, containing DNA fragments < 150
base pairs and the four core histones in equimolar
proportion. Linker histones or non-histone proteins
were not detectable within the samples.

Electrophoretic Mobility Shift Assay (EMSA).
Nucleosomes and their complexes were run in 1% aga-
rose gel with 10 V/cm electric field. We used a
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modified 1xTBE buffer (31 mM Tris, 194 mM boric
acid, 1.88 mM EDTA, pH 7.5) in which the nucleo-
somes are stable. After »90 min of electrophoresis,
the gels were stained with ethidium bromide to visual-
ize DNA containing bands by fluorescence. Markers
including both 100bp and 1000 bp DNA ladders were
employed for comparison.

Analytical ultracentrifugation. Experiments were
conducted with a Beckman analytical ultracentrifuge
(Optima XLA), equipped with an ultraviolet
absorption optical system. Sedimentation velocity
experiments were carried out in double-sector char-
coal-Epon cells. Scans were recorded at 260 nm for
mononucleosomes and their complexes. Data were
analyzed with the DCDT program to obtain the sedi-
mentation and diffusion coefficients, molecular mass
and g(s�). Sedimentation equilibrium runs were car-
ried out in six-channel charcoal-Epon cells. The data
were analyzed with the program Winnonlin V1.035
(ftp://alpha.bbri.org/rasmb/spinms_dos/uconn_uaf).

Widefield Deconvolution and Confocal micros-
copy. Widefield deconvolution microscopy was
accomplished with a DeltaVision microscope, as
described previously1,2. Confocal imaging was per-
formed on a Leica SP8 microscope. All images were
collected as stacks, where each slice was 1024 £ 1024
pixels. Z steps were 0.25mm. Confocal stacks were
deconvolved with Autoquant X3 using an adaptive psf
(point spread function). Figures were prepared in
Adobe Photoshop.

STED microscopy. STED microscopy42 was per-
formed on a home-built system (constructed by TJ
Gould at Bates College) featuring 592 nm continuous
wave depletion (MPB Communications) and 500 nm
pulsed excitation (PicoQuant) lasers. The laser lines
were combined using dichroic mirrors, passed
through a commercial scan head (Yanus IV, FEI)
and focused into the sample by a 100X/1.4NA oil
immersion objective lens (Olympus) mounted in a
commercial microscope stand (IX71, Olympus). Sam-
ples were mounted onto a z piezo stage (Mad City
Labs) for axial positioning. A spatial light modulator
(SLM; Hamamatsu) in the depletion beam path was
imaged into the back focal plane of the objective lens
to provide phase modulation for shaping the deple-
tion focus. A helical phase ramp was applied to gen-
erate the standard toroidal depletion focus for lateral
resolution enhancement in STED microscopy. Addi-
tionally, the SLM was used to remove residual system

aberrations using the aberration correction routines
previously described43, and for maintaining align-
ment between the excitation and depletion foci using
the auto-alignment procedure.44 Half- and quarter-
wave plates were used to generate circular polariza-
tion for both beams at the sample. Signal from the
sample was collected by the objective lens, descanned,
separated from the lasers using dichroic mirrors,
bandpass-filtered (540/50, Chroma), and focused
onto a 62.5 mm core diameter (»0.8 Airy units) mul-
timode fiber (Thorlabs) connected to a single-photon
counting module (ARQ-13-FC, Excelitas). The
detected signal was time-gated for additional resolu-
tion enhancement45 using custom designed gating
electronics (Opsero Electronic Design) with a soft-
ware programmable detection widow of 8 ns, delayed
1–2 ns with respect to the excitation pulse. Hardware
control and data acquisition was performed using
custom-written software in Labview (National Instru-
ments). Images of were acquired at a scan rate of
2000 lines/s, a pixel size of 25 nm, and with either
80–100 (STED mode) or 40–50 (confocal mode) line
accumulations. Laser powers at the back focal plane
of the objective lens were »160 mW and »10 mW
for depletion and excitation, respectively. For a given
field of view, STED and then confocal images were
acquired sequentially for comparison.

Measuring epichromatin thickness. The thickness
of epichromatin rim-staining was measured as the
full-width half-maximum (FWHM) of intensity line
profiles. Using custom software written in Matlab
(Mathworks), line profiles across the epichromatin
“rim” signal were background subtracted using a near-
est neighbor spline interpolation and then fitted to a
one-dimensional Lorentzian (STED images) or Gauss-
ian (confocal images) to determine the FWHM.

Image Segmentation for Counting Fab Spots. Con-
focal z-stacks of Fab were deconvolved (using Auto-
Quant X3 software) and analyzed using watershed
segmentation to determine the number of observed
Fab spots in interphase nuclei and mitotic chromo-
somes. Using custom software written in Matlab,
deconvolved z-stacks were first top hat filtered using
an ellipsoidal structuring element (6 pixel radius in X/
Y, 2 pixel radius in Z). Pixel values were normalized to
the maximum signal in each z-slice and contrast was
adjusted using the contrast-limited adaptive histogram
equalization function. Each stack was subsequently
binarized by thresholding each slice according to a
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percentage of the maximum intensity in that frame
and area-opened to remove small (< 10 pixel area)
spurious regions. Segmentation was then performed
as a function of this percentage as follows. The dis-
tance transform was computed of the logical compli-
ment of the binarized stack. By computing the
watershed transform of the negative of this distance
transform, bright objects in the original stack (i.e. Fab
spots) are identified as “catchment basins” separated
by “watershed lines”. The final stage of segmentation
consisted of computing the logical AND of the binar-
ized stack and 3D watershed lines. Finally, the number
of Fab spots was determined by finding the number of
three-dimensionally connected regions (with at least a
6-connected neighborhood) in the segmented stack.
All processing steps were performed using the func-
tions provided by Matlab’s Image Processing Toolbox.
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