
University of New England
DUNE: DigitalUNE

Environmental Studies Faculty Publications Environmental Studies Department

3-2014

Nestling Sex Ratios Do Not Support Long-Term
Parity In Two Species With Different Life-History
Strategies
Noah G. Perlut
University of New England, nperlut@une.edu

Steven E. Travis
University of New England, stravis@une.edu

Catherine A. Dunbar
University of New England

Allan M. Strong

Derek M. Wright
The University of New England

Follow this and additional works at: http://dune.une.edu/env_facpubs

Part of the Environmental Health and Protection Commons, Environmental Indicators and
Impact Assessment Commons, Environmental Monitoring Commons, and the Natural Resources
Management and Policy Commons

This Article is brought to you for free and open access by the Environmental Studies Department at DUNE: DigitalUNE. It has been accepted for
inclusion in Environmental Studies Faculty Publications by an authorized administrator of DUNE: DigitalUNE. For more information, please contact
bkenyon@une.edu.

Recommended Citation
Perlut, Noah G.; Travis, Steven E.; Dunbar, Catherine A.; Strong, Allan M.; and Wright, Derek M., "Nestling Sex Ratios Do Not
Support Long-Term Parity In Two Species With Different Life-History Strategies" (2014). Environmental Studies Faculty Publications.
Paper 11.
http://dune.une.edu/env_facpubs/11

http://dune.une.edu?utm_source=dune.une.edu%2Fenv_facpubs%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dune.une.edu/env_facpubs?utm_source=dune.une.edu%2Fenv_facpubs%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dune.une.edu/env?utm_source=dune.une.edu%2Fenv_facpubs%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dune.une.edu/env_facpubs?utm_source=dune.une.edu%2Fenv_facpubs%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/172?utm_source=dune.une.edu%2Fenv_facpubs%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1015?utm_source=dune.une.edu%2Fenv_facpubs%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1015?utm_source=dune.une.edu%2Fenv_facpubs%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/931?utm_source=dune.une.edu%2Fenv_facpubs%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/170?utm_source=dune.une.edu%2Fenv_facpubs%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/170?utm_source=dune.une.edu%2Fenv_facpubs%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dune.une.edu/env_facpubs/11?utm_source=dune.une.edu%2Fenv_facpubs%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bkenyon@une.edu


Volume 131, 2014, pp. 224–234
DOI: 10.1642/AUK-13-183.1

RESEARCH ARTICLE

Nestling sex ratios do not support long-term parity in two species with
different life-history strategies

Noah G. Perlut,1* Steven E. Travis,2 Catherine A. Dunbar,1 Allan M. Strong,3 and Derek M. Wright1

1 University of New England, Department of Environmental Studies, Biddeford, Maine, USA
2 University of New England, Department of Biology, Biddeford, Maine, USA
3 University of Vermont, The Rubenstein School of Environment and Natural Resources, Burlington, Vermont, USA
* Corresponding author: nperlut@une.edu

Received January 14, 2014; Accepted January 18, 2014; Published March 26, 2014

ABSTRACT
To maximize fitness, breeding adults may respond to environmental processes by adjusting their progeny’s sex ratios.
R. A. Fisher in 1930 hypothesized that frequency-dependent selection would result in equal investment in sons and
daughters over the long term, yielding a balanced sex ratio if the costs of raising a son and daughter are equal. Diverse
hypotheses have tried to explain population and brood-by-brood deviations from this mean as well as annual variation
by focusing on adult sex ratios, resources, abiotic conditions, and female and male quality. We collected data in 2002–
2010 to explore population-level variation in nestling sex ratios in 2 migratory grassland songbird species: the Bobolink
(Dolichonyx oryzivorus) and Savannah Sparrow (Passerculus sandwichensis). These species differ in migratory strategy
(long-distance vs. short-distance), and morphological dimorphism. Fisher’s hypothesis was rejected for Savannah
Sparrows (n¼ 684 nestlings; 39% male) but not rejected for Bobolinks (n¼ 390 nestlings; 53.8% male). No relationship
was found between nestling and adult sex ratios measured in the same year. In descriptive analyses at the brood level,
male and female body size and age, and ecological conditions (temperature and precipitation) failed to predict
nestling sex ratios. Although male nestlings were heavier than female nestlings and resource availability changed
through the season, these factors did not influence sex ratios relative to female body size or seasonality. For Savannah
Sparrows, larger broods tended to be male-biased. While we were otherwise not able to explain deviation in offspring
sex ratio for Savannah Sparrows, our results suggest that the ecological and evolutionary pressures that affect sex
ratios may be both species- and population-specific.

Keywords: Bobolink, Dolichonyx oryzivorus, Fisher’s hypothesis, homeostasis hypothesis, nestling sex ratio
adjustment, Passerculus sandwichensis, Savannah Sparrow, Vermont

La proporción sexual de los pichones no apoya la igualdad de largo plazo en dos especies con diferentes
estrategias de historia de vida

RESUMEN
Para maximizar su aptitud, los adultos que se reproducen podrı́an responder a procesos ambientales mediante el
ajuste de la proporción de sexos en su progenie. Fischer formuló la hipótesis de que la selección dependiente de la
frecuencia podrı́a conducir a una inversión similar en hijos e hijas en el largo plazo, produciendo una proporción de
sexos balanceada si los costos de criar hijos e hijas son los mismos. Varias hipótesis han tratado de explicar las
desviaciones de esta media a nivel de poblaciones y nidadas, ası́ como su variación anual enfocándose en la
proporción sexual de los adultos, los recursos, las condiciones abióticas y la calidad de hembras y machos.
Recolectamos datos entre 2002 y 2010 para explorar la variación a nivel poblacional en la proporción sexual de
pichones de dos aves migratorias de pastizal: Dolichonyx oryzivorus y Passerculus sandwichensis. Estas especies difieren
en su estrategia migratoria (larga vs. corta distancia) y en el dimorfismo en morfologı́a. La hipótesis de Fischer fue
rechazada para P. sandwichensis (n¼ 684 pichones; 39% machos), pero no para D. oryzivorus (n¼ 390 pichones; 53.8%
machos). No se encontró relación entre polluelos y adultos en las proporciones sexuales medidas en el mismo año. En
análisis descriptivos al nivel de nidadas, la proporción sexual de los pichones no pudo ser explicada por el tamaño
corporal ni la edad de machos y hembras, ni por las condiciones ecológicas (temperatura y precipitación). Aunque los
pichones macho fueron más pesados que las hembras y la disponibilidad de recursos cambió durante la temporada,
estos factores no tuvieron influencia sobre la proporción sexual en relación con el tamaño corporal de las hembras o la
estacionalidad. En P. sandwichensis, las nidadas más grandes tendieron estar sesgadas hacia incluir más machos.
Aunque no pudimos explicar la desviación en la proporción sexual de la descendencia en P. sandwichensis, nuestros
resultados sugieren que las presiones evolutivas y ecológicas que afectan las proporciones sexual podrı́an ser
especı́ficas de cada especie y de cada población.
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INTRODUCTION

Offspring sex ratios are often suggested to be affected by

both environmental and evolutionary processes, including

population density, mating systems, and sexual selection.

Breeding adults may respond to these processes by

influencing the sex ratio of their young in an effort to

maximize adults’ long-term fitness. A broad array of taxa

are known to adjust offspring sex ratios, including red deer

(Cervus elaphus; Clutton-Brock et al. 1986), southern

elephant seals (Mirounga leonine; Arnbom et al. 1994), fig

wasps (Tetrapus costaricensis and Blastophaga spp.; Herre

1985), Atlantic silversides (Menidia menidia; Conover and

VanVoorhees 1990), and several species of birds (see

reviews by Cockburn et al. 2002, Alonso-Alvarez and

Velando 2003). Offspring sex ratio adjustment at the

individual level may have either positive or negative effects

on the population growth rate. For example, an overabun-

dance of males could reduce the effective population size

and cause population decline (Clout et al. 2002); however,

where selection processes are more variable, biased sex

ratios could support population growth (Herre 1987).

Fisher (1930) proposed that frequency-dependent selec-

tion would result in an equal investment in sons and

daughters over the long term, leading to a balanced sex

ratio if the costs of raising a son and daughter are equal.

The homeostasis hypothesis, a close extension of Fisher’s

(1930) classic hypothesis, suggests that long-term parity is

maintained when females produce more of the sex that is

rarer in the adult population (Creel and Creel 1997) as a

form of negative frequency-dependent selection; however,

Donald (2007) reviewed 173 bird species and found that

65% of adult sex ratios were biased (typically favoring

males), while in 114 species only 16% of studies showed

nestling sex ratios bias. This pattern is contrary to the

homeostasis hypothesis, assuming that studies had similar

power to detect nestling sex ratio biases as they did to

detect adult sex ratio biases. These results suggest that the

factors that influence sex ratio adjustment—if they are

actually adjusted—vary between species and populations

(Donald 2007).

Here, we tested the Fisher (1930) and homeostasis

hypotheses to explore population-level nestling sex ratios

in 2 migratory grassland songbird species, Bobolinks

(Dolichonyx oryzivorus) and Savannah Sparrows (Passer-

culus sandwichensis), breeding in the same agricultural

habitats. These species use similar sites for breeding and

food resources, comprise .92% of all obligate grassland

songbirds breeding in our study region (Shustack 2004),

and .99% of the birds breeding in our study fields. Both

species and both sexes show high natal fidelity to our study

sites (94% of adults and 30% of juveniles; Fajardo et al.

2009); therefore, these recruits have the potential to collect

information on the breeding sex ratios of the year they

were born and current year, creating an environment

where they could adjust their sex ratio output accordingly.

Likewise, adult Bobolinks and Savannah Sparrows show

high apparent survival rates in this study system (Perlut et

al. 2008a), providing them with an opportunity to assess

the current year’s adult sex ratio with past years’ and adjust

their efforts accordingly. They differ with respect to

migratory behavior, which affects how much reproductive

effort they expend (Perlut et al. 2006).

We present a long-term study of 2 species with different

life history strategies, allowing us to better understand

variation in sex ratios and therefore population-level

processes. We predicted that Savannah Sparrows, whose

shorter migration allows a greater opportunity to nest

multiple times, would show greater within-year variation in

brood sex ratios because ecological and social pressures vary

across the breeding season (which can be up to 5 weeks

longer than Bobolinks); therefore, in Savannah Sparrows,

multiple factors may influence sex ratio adjustment as the

conditions vary among individuals, environments, and years.

After testing the Fisher and homeostasis hypotheses in

response to these species’ known ecology and natural

history as well as what is known for other species, we

conducted descriptive analyses to better understand nest-

level variation. These species differ in their degree of sexual

dimorphism, with Bobolinks showing greater morpholog-

ical dimorphism than Savannah Sparrows; Bobolink and

Savannah Sparrow males are 20% and 5%, respectively,

larger than females (Martin and Gavin 1995, Wheelwright

and Rising 2008). We therefore predicted that if Bobolinks

showed a female-biased sex ratio, these adjustments may

reflect the increased costs of raising one sex over the other,

where investment in parental care may be greater for sons

than for daughters (male nestlings are heavier than female

nestlings by the end of parental care; see Results). We

explored correlations between female body size and age

with sex ratios (Dowling and Mulder 2006). Similarly, we

tested if male structural size (Yamaguchi et al. 2004) or

true paternity influenced sex ratios. We then tested if there

were differences among brood sizes and in mass between

male and female nestlings because the larger sex may be at

a disadvantage in times of lower resources (e.g., early in the

breeding season; Trivers and Willard 1973). Finally, we

tested if ecological conditions, particularly temperature

and precipitation during the laying female’s fertile period,

affected sex ratios (Saino et al. 2008).
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METHODS

Study Area

Our work took place in the Champlain Valley of Vermont

and New York, USA, which includes 146,000 ha of

managed grasslands (NASS 2010). We sampled 6 hayfields

and 3 pastures in Hinesburg and Shelburne, Vermont.

Field sizes ranged from 13.2 to 38.3 ha (mean 21.1 ha; see

Perlut et al. 2006 for additional details on vegetation).

Study Species

Bobolinks and Savannah Sparrows are grassland obligate,

ground-nesting songbirds whose breeding distribution

includes diverse grassland habitats across northern North

America (Martin and Gavin 1995, Wheelwright and Rising

2008). In our study region there is little variation between

species in breeding habitats, clutch size (Perlut et al. 2006),

nest location (Perkins et al. 2013), or food resources fed to

nestlings (A. Strong personal communication). In addition,

both species are socially and genetically polygynous, where

males can have multiple female social mates, and multiple

males can have paternity in a single brood (Gavin and

Bollinger 1985, Perlut et al. 2008b). By contrast, Bobolinks

arrive in Vermont in mid- to late-May, typically raise only

one brood per summer, and are highly dimorphic in body

size (males are up to 20% larger; Martin and Gavin 1995),

whereas Savannah Sparrows arrive in Vermont in late-

April, can raise multiple broods, and males are approxi-

mately 5% larger than females (Wheelwright and Rising

2008).

Field Sampling

We collected reproductive and behavioral data for

Bobolinks in 2002–2005, 2007–2008, and 2010, and for

Savannah Sparrows in 2002–2010 from early-May to late-

July each year. Nests were located through behavioral

observations. Female and male nest association was

identified by incubation (female only), provisioning, and

territory defense behavior. Nests were visited every 1–2

days to assess their status until fledging or failure. We

collected location data for each nest using a hand-held

GPS unit. Adults were captured with mist nets, banded

with 3 colored and a single U.S. Geological Survey band.

We collected a small (20–60 lL) sample of blood and took

standard morphological measurements: wing length,

tarsus, bill length, bill width, and bill depth. Nestlings

were banded, weighed, and blood samples were collected

at approximately 6 days of age (86% of nestlings were

sampled between days 5 and 7; because of the timing of

when we found the nest, or to minimize disturbance at the

nest, ,1% were sampled on days 3 and 10). For both adults

and nestlings, blood was placed on Whatman filter paper

and frozen at �808C until analyzed.

To evaluate the year-specific adult sex ratio, we spent

the first 1–2 weeks of each season blanket netting each

study field, attempting to catch each breeding adult. We

continued our banding efforts as we found nests through

the season. If a bird was socially associated with a nest but

was not banded, we caught it at the nest site. Because we

attempted to color band every adult, we were able to

determine adult sex ratios through annual banding

records, parental care nest association data, and compre-

hensive resighting data that we maintained throughout

each breeding season. These data were collected on each

field every other day for as long as nests were active on a

given field. A bird was included within the adult sex ratio if

it met at least one of the following criteria: it was identified

as socially associated with a nest, was color banded in a

previous year and resighted (or recaptured) on the same

field, or was banded within the given year and resighted at

least one time on the field at least 1 week after banding.

These combined efforts also allowed us to age individual

birds by site residency (age cannot be assessed by plumage

in these species; Pyle 1997). A new (unbanded) bird was

assumed to be a 2-year-old recruit. In this population, both

species show extremely high breeding (and natal) site

fidelity; 94% of all individuals who survive to the following
year (regardless of the habitat they used or reproductive

success during the previous year) returned to the same

field they were in previously (Fajardo et al. 2009). Each

year, from our resight, banding, and nest records,

unbanded birds accounted for ,3% of all territorial birds

on our study fields.

Molecular Analysis of Sex Ratios
DNA was extracted from blood samples using a Qiagen

DNeasy Kit and then underwent polymerase-chain-reac-

tion (PCR) amplification of sex-specific DNA markers

using primers described by Han et al. (2009). Gels were

visualized and photographed under UV illumination and

scored by eye. Males could be identified by single (Z-

linked) bands whereas females were identified by double

(Z- and W-linked) bands. Each gel included one adult male

and female as a reference.

We restricted our analysis to only those nests that were

fully sampled (i.e. blood was collected from nests in which

the number of nestlings was equal to the number of eggs

laid; 54.7% and 48.3% of all broods for Bobolinks and

Savannah Sparrows, respectively). Thus, we removed any

nests that had natural brood reduction or nests where we

were unable to amplify DNA from certain individuals. Due

to the binomial nature of sex ratio data, where possible we

adopted a generalized linear modeling (GLM) approach

and analyzed sex ratios as numbers of males and females

within broods (Wilson and Hardy 2002). In situations

where this was not possible (e.g., homeostasis hypothesis,

where we tested the sex ratio of a population), sex ratios
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were calculated as percent males within broods and arc-sin

transformed to adjust for non-normality.

Statistical Analysis
After initially testing for long-term parity and its possible

dependence on year within populations of both Bobolinks

and Savannah Sparrows, we then tested if adult sex ratios

from both the present and previous year explained

variation in sex ratios. We examined the correlation

between nestling sex ratios and female morphology and

age, male morphology, the total number of offspring males

sired, and proportion of offspring produced through extra-

pair paternity (Savannah Sparrows only because paternity

data for Bobolinks was unavailable). We also examined

environmental variables including seasonality (clutch

completion date), average high temperature, average low

temperature, and total precipitation beginning 5 days

before the first egg was laid until the last egg was laid,

spanning the beginning to the end of the fertile period

(Kempenaers 1993); sex is determined 1–2 hr before

ovulation (Rutkowska and Badyaev 2008). We also
compared the mass of male versus female nestlings to

determine if one sex was likely to require a greater parental

investment than the other. All measures of female

morphology, including tarsus length, wing cord, and bill

volume, were converted to Z-scores (all measurements

were collected by one observer, N. Perlut).

To address male paternity in Savannah Sparrows we

determined parentage for nests found in 2002–2006.

Paternity analysis was performed with 4 hypervariable

microsatellite loci: Psa12 (Freeman-Gallant et al. 2005);

Escu6 (Hanotte et al. 1994); and Mme1 and Mme8 (Jeffery

et al. 2001). All molecular and paternity assignment

methods followed Freeman-Gallant et al. (2005) and Perlut

et al. (2008b). This population showed high allele diversity

(range 10–38) and a 0.91547 probability of exclusion (see

Perlut et al. 2012 for additional information on exclusion

probabilities). We assigned paternity to all nestlings in 44

broods. All offspring matched their mothers at all loci; 35

of 44 broods had at least one extra-pair young; 18 of 44

broods had both extra-pair and within-pair young. We

identified the genetic father in 82% of nestlings.

We tested for parity separately in Bobolinks and

Savannah Sparrows by combining data over all sampling

years and using nests (i.e. individual broods) as the

sampling units. Initially, we constructed a logistic regres-

sion model (a form of GLM appropriate to binomially

distributed data such as brood-specific sex ratios; Wilson

and Hardy 2002) for each species to determine if brood sex

ratios varied by year. These GLM models, which provided a

means of applying different weights to individual broods

depending on the number of nestlings present by binding

together the actual number of males and females within

broods as a single response variable, were implemented

with binomial errors and the logit-link function using R

version 2.15.1 (R Development Core Team 2010). We

evaluated the overall effect of year on brood sex ratios by

comparing each year-based model with a null model (with

year removed) via F-tests, as recommended by Wilson and

Hardy (2002). Once we had confirmed that sex ratios did

not vary significantly from year to year in either species, we

proceeded to test for parity within each species using

broods from all years combined. These combined tests

were run according to Neuhäuser (2004), who developed a

Z-test for testing the null hypothesis of parity in sex-ratio

studies, which explicitly adjusts for the non-independence

of nestlings within broods.

Postma et al. 2011 suggested that for adjustment in sex

ratios to be possible there must be extra-binomial variance

in sex ratios (i.e. there must be more male- and/or female-

biased broods than expected by chance); therefore, we

conducted an extra-binomial variance test according to the

methods of James (1975). As described in Krackow et al.

(2002), this method is appropriate when many small

broods of unequal size are available for analysis and relies

on a one-tailed Z-test for detecting significant positive

deviations from expected variance. We conducted separate

tests for Bobolinks and Savannah Sparrows, combining
broods over all sampling years within species.

To test the homeostasis hypothesis (that population sex

ratios remain near parity because annual nestling sex ratios

are adjusted to the current or the previous year’s adult sex
ratios), we ran separate simple linear regressions by species

with arc-sin transformed nestling sex ratio (percent males)

as the response variable, and arc-sin transformed adult sex

ratios as the explanatory variables.

We tested the female adult morphology and ecological

factors employing a forward model selection process based

on a series of logistic regression models within each

species.We chose this descriptive approach because, to our

knowledge, there are no published data identifying what

characters define fitness in male or female Bobolinks or

Savannah Sparrows. Initially, each model treated brood sex

ratio as a function of a single explanatory variable, where

the explanatory variables included all female morpholog-

ical and environmental variables as well as female age.

Because of the multiple testing required by this approach

(9 single-factor logistic regressions per species), we used a

Bonferroni-adjusted test-wise a-level of 0.0056 for each

individual test. All explanatory variables yielding signifi-

cant p-values were ranked, and the variable returning the

lowest p-value was subsequently combined with all other

explanatory variables in a series of 2-way logistic

regression models. All 2-way models with significant

effects beyond the original main effect were ranked again

according to their overall residual deviances, and the

selection process continued to test a series of 3-way

models, and so on, with the goal of ultimately arriving at a

The Auk: Ornithological Advances 131:224–234, Q 2014 American Ornithologists’ Union

N. G. Perlut, S. E. Travis, C. A. Dunbar, et al. Nestling sex ratio does not show long-term parity 227



model retaining only significant terms. Note that year was

also introduced as an explanatory variable at the level of

the 2-way and higher-order models to allow the possibility

of significant female morphological and environmental

effects that were variable across years. As above, F-tests

were used to determine whether explanatory variables and

their interactions were adding significant explanatory

power to the overall model, treating brood sex ratio as

the response variable by binding together the actual

number of males and females within broods.

We tested for effects of male morphology on Savannah

Sparrows using a logistic regression approach similar to

that described for females. In the case of males, the

forward selection process began with a group of centered

variables (Z-score), which included tarsus length, wing

cord length, bill volume, and mass, as well as the total

number of offspring sired, and proportion of offspring

produced through extra-pair paternity. Because many

males were sampled in multiple years, which created an

issue of non-independence across years, we first ran our

logistic regression models separately by year for each year

that paternity data were available (2002–2005). Because of

multiple testing within years (6 single-factor logistic

regressions per year), test-wise a-levels were Bonferroni-

adjusted to 0.0083. Subsequently, we ran the models on all

years combined but using each male only once, the first

time he appeared among the samples. In several instances,

this procedure resulted in models with significant interac-

tions and no significant main effects. Because of the

difficulty of biologically interpreting such models, we

herein only report interactive models with significant main

effects.

Finally, we ran separate ANCOVAs by species, treating

the mass of nestlings as the response variable, sex as the

grouping variable, and nestling age (in days) as the

covariate, to compare nestling mass adjusted for age

between males and females. If male nestlings were found

to be larger in either species, we then determined whether

broods with more males were more likely to fail (for the

period between blood sampling and fledging) by running a

logistic regression of nest fate (fail or fledge) on sex ratio.

Nest fate, as a binary variable, is appropriately modeled

with binomial errors and the logit-link function. Sex ratio,

which served as the explanatory variable in this case, was

entered into the model as the arc-sin transformed nestling

sex ratio (percent males). Year (and sex-ratio by year) was

also included as a factor in each species’ model to allow for

variability in the effect of sex ratio on nest fate by year. We

used a logistic-regression model for testing the effects of

brood size on sex ratio.

We transformed each of the explanatory variables as

necessary to meet the assumptions of the various tests we

employed. Because they represented counts (in units of

years), female ages were square-root transformed prior to

analysis. Because of significant skewness, precipitation was

log-transformed. To simplify interpretation in logistic

regressions that included multiple explanatory variables,

all variables were centered (by subtracting the mean from

all individual measurements) prior to analysis (see Quinn

and Keough 2002). We considered all nonsignificant p-

values evidence of poor model fit. All statistical analyses

were performed in R, version 2.15.1 (R Development Core

Team 2010).

RESULTS

Population-Level Hypotheses
We sampled 82 Bobolink (390 nestlings) and 181 Savannah

Sparrow (684 nestlings) broods in which we obtained DNA

from every egg laid. After determining that there was no

difference in annual brood sex ratios across years

(Bobolink: F ¼ 0.158, df ¼ 6 and 80, P ¼ 0.987; Savannah

Sparrow: F ¼ 1.016, df ¼ 8 and 179, P ¼ 0.426), we

combined broods over all years within each species. Over

all years combined, Savannah Sparrows showed a signif-

icant female bias (Z ¼ �5.878, P , 0.001), significantly

deviating from the Fisher hypothesis of parity, with just

39% of nestlings sexed as male. In comparison, the

Bobolink nestling population did not differ significantly

from parity (Z¼ 1.523, P¼ 0.064; Figure 1), although there

was a slightly higher proportion of males among the

nestlings (53%).

Significant extra-binomial variance was detected for

Savannah Sparrows but not for Bobolinks. For Bobolinks,

the number of broods may have simply provided

insufficient power for detecting extra-binomial variance

because the P-value was relatively small but nonsignificant

(P ¼ 0.075, Z ¼ 1.437). For Savannah Sparrows, extra-

binomial variance was indicative of overdispersion, with a

greater sex-bias among broods than expected by chance (Z

FIGURE 1. Percentage of male Bobolink and Savannah Sparrow
nestlings across years. No significant variation was found. Sex
ratios for Bobolinks in 2006 and 2009 were not evaluated. Values
indicate number of nestlings sampled.
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¼ 1.651, P ¼ 0.049). Although both species showed more

adult females in the population, sex ratios did not deviate

from parity for either species (Bobolink: G2¼3.46, df¼1, P

¼ 0.063, mean percent male 0.45 [min 0.40, max 0.48];

Savannah Sparrow: G2 ¼ 0.732, df ¼ 1, P ¼ 0.39, mean

percent male 0.47 [min 0.42, max 0.52]). Adult sex ratios

were considered consistent across years because there was

no significant interaction between sex and year for either

species (Bobolink: G2 ¼ 1.57, df ¼ 8, P ¼ 0.99; Savannah

Sparrow: G2 ¼ 1.12, df ¼ 8, P ¼ 0.99).

To determine how long-term parity is maintained over

time, we tested the homeostasis hypothesis. No relation-

ship was found between nestling and adult sex ratios

measured in the same year (Bobolink: F¼ 4.373, df¼ 1 and

5, P¼ 0.091; Savannah Sparrow: F , 0.001, df¼ 1 and 5, P

¼ 0.988; Figure 2) or from adult sex ratios of the previous

year (Bobolink: F¼4.358, df¼1 and 5, P¼0.091; Savannah

Sparrow: F , 0.001, df ¼ 1 and 5, P ¼ 0.978).

Nest-Level Sex Ratio Descriptive Analyses
No aspect of female morphology explained variation in

nestling sex ratios; for Bobolinks, the unadjusted P-values

from the 3 single-term logistic regression models run on

female morphological variables ranged from 0.067 to

0.349; for Savannah Sparrows, P-values ranged from

0.450 to 0.957 (Table 1). The distribution of female ages

for Bobolinks and Savannah Sparrows, respectively, were:

2-yr-old 68% and 56%; 3-yr-old 14% and 25%; 4-yr-old 10%

and 13%; 5-yr-old 6% and 4%; 6-yr-old 0% and 1%; 7-yr-old

1% and 1%; and 8-yr-old 1% and 0%. Female age also did

not affect offspring sex ratios (Bobolinks: P ¼ 0.712;

Savannah Sparrows: P ¼ 0.309; Table 1). No ecological

factors, including seasonality, average high temperature,

low temperature, or precipitation during egg laying, related

to nestling sex ratios (Bobolinks: P-values 0.600–0.952;

Savannah Sparrows: P-values 0.197–0.946; Table 1).

Similarly, male body size and paternity did not explain

nestling sex ratios. For male Savannah Sparrows across all

years, male mass, tarsus length, wing length, bill volume,

extra-pair paternity, and total paternity did not explain

FIGURE 2. Nestling and adult sex ratios (homeostasis hypoth-
esis) measured in the same year (A) or previous year (B) for
Bobolinks (open diamonds) or Savannah Sparrows (filled
diamonds) breeding in the Champlain Valley of Vermont. No
relationships were found.

TABLE 1. F-test results from one-way logistic regression models run on all female morphological and environmental variables for
Bobolinks and Savannah Sparrows breeding in the Champlain Valley of Vermont.

Species Variable tested F P

Bobolink Tarsus length F ¼ 0.888, df ¼ 1, 76 0.349
Wing cord length F ¼ 2.632, df ¼ 1, 64 0.105
Bill volume F ¼ 3.443, df ¼ 1, 76 0.067
Age F ¼ 0.137, df ¼ 1, 71 0.711
Clutch completion date F ¼ 0.277, df ¼ 1, 80 0.599
Distance to field edge F ¼ 0.029, df ¼ 1, 78 0.865
Mean high temperature F ¼ 0.004, df ¼ 1, 80 0.948
Mean low temperature F ¼ 0.017, df ¼ 1, 80 0.898
Total precipitation F ¼ 0.004, df ¼ 1, 80 0.952

Savannah Sparrow Tarsus length F ¼ 0.003, df ¼ 1, 128 0.957
Wing cord length F ¼ 0.573, df ¼ 1, 131 0.450
Bill volume F ¼ 0.469, df ¼ 1, 126 0.495
Age F ¼ 1.039, df ¼ 1, 177 0.309
Clutch completion date F ¼ 0.005, df ¼ 1, 168 0.946
Distance to field edge F ¼ 1.678, df ¼ 1, 175 0.197
Mean high temperature F ¼ 0.722, df ¼ 1, 163 0.397
Mean low temperature F ¼ 0.850, df ¼ 1, 163 0.358
Total precipitation F ¼ 0.022, df ¼ 1, 163 0.882
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variation in nestling sex ratios (P-values 0.390–0.955;

Table 2).

For Bobolinks, there was no effect of brood size on

nestling sex ratio (G2¼ 0.34, df¼ 1, P¼ 0.56); however, for

Savannah Sparrows larger broods tended to have male-

biased sex ratios (G2 ¼ 5.50, df ¼ 1, P ¼ 0.02; probability

male ¼ �1.6817 þ 0.3159*brood size; Figure 3). Male

nestlings weighed more than female nestlings for Bobo-

links (F¼ 29.94, df¼ 1 and 468, P , 0.001) and Savannah

Sparrows (F¼ 11.13, df¼ 1 and 726, P , 0.001), although

the difference was greater for Bobolinks (females: Mass ¼
8.309 [0.683 SE] þ 1.394*Day; males: Mass ¼ 9.711 [0.678

SE] þ 1.394*Day) than for Savannah Sparrows (females:

Mass¼ 5.215 [0.394 SE]þ 1.059*Day; males: Mass¼ 5.689

[0.402 SE] þ 1.059*Day). However, the nestling sex ratio

did not affect nest fate (fledge or fail) for either species

(Bobolinks: F ¼ 0.62, df ¼ 1 and 67, P ¼ 0.433; Savannah

Sparrows: F ¼ 0.003, df ¼ 1 and 162, P ¼ 0.954), and the

interaction with year was not significant for either species

(Bobolinks: F ¼ 0.03, df ¼ 6 and 67, P ¼ 1.000; Savannah

Sparrows: F ¼ 1.47, df ¼ 8 and 162, P ¼ 0.174).

DISCUSSION

Overall nestling sex ratios were significantly female-biased

over a span of 9 years for Savannah Sparrows but did not

differ from parity over 7 years for Bobolinks. A closer look

TABLE 2. F-test results from one-way logistic regression models run on all male morphological and paternity variables in Savannah
Sparrows breeding in the Champlain Valley of Vermont.

Year Variable tested F P

2002 Tarsus length F ¼ 0.122, df ¼ 1, 6 0.739
Wing cord length F ¼ 1.685, df ¼ 1, 5 0.251
Bill volume F ¼ 0.016, df ¼ 1, 6 0.902
Mass F ¼ 0.854, df ¼ 1, 5 0.398
Total paternity F ¼ 0.308, df ¼ 1, 6 0.599
Percent Extra-pair paternity F ¼ 0.226, df ¼ 1, 6 0.634

2003 Tarsus length F ¼ 0.340, df ¼ 1, 22 0.566
Wing cord length F ¼ 0.254, df ¼ 1, 15 0.622
Bill volume F ¼ 0.001, df ¼ 1, 22 0.979
Mass F ¼ 4.262, df ¼ 1, 14 0.058
Total paternity F ¼ 0.439, df ¼ 1, 22 0.514
Percent Extra-pair paternity F ¼ 0.002, df ¼ 1, 22 0.969

2004 Tarsus length F ¼ 3.056, df ¼ 1, 31 0.090
Wing cord length F ¼ 1.173, df ¼ 1, 12 0.300
Bill volume F ¼ 0.017, df ¼ 1, 31 0.899
Mass F ¼ 0.162, df ¼ 1, 11 0.695
Total paternity F ¼ 2.035, df ¼ 1, 31 0.164
Percent Extra-pair paternity F ¼ 1.910, df ¼ 1, 31 0.177

2005 Tarsus length F , 0.001, df ¼ 1, 10 0.984
Wing cord length F ¼ 0.452, df ¼ 1, 9 0.518
Bill volume F ¼ 0.966, df ¼ 1, 10 0.349
Mass F ¼ 5.499, df ¼ 1, 9 0.044
Total paternity F ¼ 0.011, df ¼ 1, 10 0.920
Percent Extra-pair paternity F ¼ 0.053, df ¼ 1, 10 0.822

All Years Tarsus length F ¼ 0.757, df ¼ 1, 48 0.390
Wing cord length F ¼ 0.015, df ¼ 1, 26 0.904
Bill volume F ¼ 0.115, df ¼ 1, 48 0.736
Mass F ¼ 0.524, df ¼ 1, 24 0.476
Total paternity F ¼ 0.107, df ¼ 1, 48 0.745
Percent Extra-pair paternity F ¼ 0.003, df ¼ 1, 48 0.955

FIGURE 3. Percent male nestlings compared with clutch size for
Bobolinks and Savannah Sparrows. Nestling sex ratios were not
associated with clutch size; however, for Savannah Sparrows,
larger clutches tended to be male-biased. Error bars indicate
standard deviation, and values indicate sample size.
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at the variation within the data revealed that nestling sex

ratios were neither influenced by adult sex ratios in the

given or preceding year (i.e. no support for the homeosta-

sis hypothesis) nor did they vary significantly among years.

The lack of support for the homeostasis hypothesis

generally agrees with the majority of other studies. While

nestling sex ratios have been found to be positively related,

negatively related, or unrelated to adult sex ratios, most

commonly offspring sex ratios have been balanced while

adult sex ratios were male-biased (reviewed in Donald

2007). Our results for Bobolinks support Donald (2007) in

that the adult population was female-biased and nestling

sex ratios were balanced, but conflict for Savannah

Sparrows, which showed a female-biased adult sex ratio

and female-biased nestling sex ratio (this trend was not

predictive on an annual basis because our results did not

support the homeostasis hypothesis). In this study system,

for both species, male apparent survival is 35% higher than

female apparent survival (Perlut et al. 2008a). Given these

sex-biased adult survival rates, to maintain stable popula-
tions, first-year survival rates would have to be female-

biased and/or nestling sex ratios would have to be strongly

female-biased.

Contrary to our results, Wheelwright and Seabury
(2003) analyzed a 14-year dataset and found 50:50

Savannah Sparrow nestling sex ratios in an island

population, and these ratios did not vary among years,

timing of the breeding season, or in relation to adult sex

ratios. Natal site fidelity was similar between this island

(11.2%; Wheelwright and Mauck 1998) and our mainland

population (7.5%; N. Perlut personal communication), and

adult sex ratios were female-biased on both the island and

our mainland population. Saino et al. (2008) studied Barn

Swallows (Hirundo rustica) with a 10-year dataset and

observed differences among years; however, the significant

effects explaining sex ratio variation did not vary among

years. Bobolinks produce only one brood per year, which

may be explained by their long-distance migration to

southern South America each year; thus, males are likely to

face intense competition for limited mating opportunities,

and many males may not mate. Yet, nestling sex ratios

were not different from parity in this species. In

comparison, Savannah Sparrows can produce multiple

broods per year because they have a relatively short

migration distance, and they showed strongly female-

biased nestling sex ratios.

Although ambient temperatures increased through the

breeding season during each year of the study, sex ratios

were not affected by the year, seasonality, or the other

ecological and environmental conditions that we evaluat-

ed. These results contrast with recent studies in which

seasonality was a key factor explaining variation in nestling

sex ratios (Husby et al. 2006, Graham et al. 2011) but agree

with a lack of seasonal sex ratio differences for another

grassland species, the Corn Bunting (Miliaria calandra;

Hartley et al. 1999) and one cooperative breeder, the

Purple-crowned Fairy-wren (Malurus coronatus; Kingma

et al. 2011). Similarly, in the Aquatic Warbler (Acroce-

phalus paludicola), sex ratios were not affected by

seasonality or mean daily temperature; however, simula-

tion modeling suggested that low ambient temperatures

during the fertile period led to female-biased nestling sex

ratios (Dyrcz et al. 2004). Because sex ratios did not change

through the season, females did not invest more in males

when resources such as invertebrate prey were most

abundant in early- to mid-July (Zalik and Strong 2008),

and they did not respond when females could better

estimate the adult sex ratio (later in the season; Bensch et

al. 1999).

Another potential reason to produce males earlier in the

season (particularly because males are larger) is that an

earlier fledging date gives them more time to prepare for

migration (Dolan et al. 2009). The lack of a seasonal effect

in our current study may conflict with what is known for

another grassland nesting species, the Skylark (Alauda

arvensis), where males were favored earlier in the season;

Eraud et al. (2006) hypothesized, in considering results of

previous studies on their study system, that males were
produced during a period of higher resource availability;

therefore, given that males in both species are the larger

sex, Fisher’s hypothesis would have predicted a slightly

female-biased sex ratio. Also related to seasonality and

food, nest fate in our study was not affected by the sex ratio

of the nestlings when resources were scarce. Although

male nestlings weighed significantly more than female

nestlings (particularly for Bobolinks), suggesting they

require more resources, sex ratios did not vary based on

the weight of nestlings. We only monitored nestling

survival through the fledging period, however, and it is

possible that there were differences between sexes in the

post-fledging period while still receiving parental care

because larger nestlings may have higher rates of post-

fledging survival (Naef-Daenzer et al. 2001, Potti et al.

2002). Furthermore, this result may be spurious if nest fate

was unrelated to nestling food resource availability.

For Savannah Sparrows only, larger broods tended to be

male-biased. Dyrcz et al. (2004) found that for Aquatic

Warblers, brood size influenced nestling sex ratio;

however, larger broods tended to be female-biased (this

species had a similar range of brood size, 2–6, to Savannah

Sparrows and Bobolinks). The White-throated Dipper

(Cinclus cinclus) also showed extreme female-bias for the

largest brood size (6); Øigarden and Lifjeld (2013)

explained this deviation as the different costs of rearing

heavier sons than lighter daughters. Although male

Savannah Sparrow nestlings were heavier than female

nestlings, our results indicated no costs to rearing the

heavier sex.
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In addition, no relationship was found between true

paternity, extra-pair paternity, or male morphology and sex

ratios in Savannah Sparrows. As with our results, Neto et

al. (2011) found that Savi’s Warblers (Locustella lusci-

nioides) also showed female biased nestling sex ratios, but

these could not be explained by male size, female size, or

extra-pair paternity. To our knowledge, no study has

characterized attractiveness in Savannah Sparrows (or in

Bobolinks); our result further suggests that in these species

the morphological characters that influence reproductive

processes are simply not known. Taff et al. (2011) found an

interaction between male ornamentation and age influ-

enced nestling sex ratios of the Common Yellowthroat

(Geothlypis trichas). Savannah Sparrows, however, are

monomorphic in plumage and only slightly dimorphic in

other aspects of their morphology. Because this species has

no known ornament, we did not test any plumage

characteristic (although we found no effect of female age

on sex ratios for either species). Alternatively, Bobolinks

show strong plumage and morphological dimorphism and

thus may have been the more appropriate species to test

differences among males.

Our results contrast with Fisher’s long-term parity

hypothesis and the recent studies that show diverse

causation of nestling sex ratio manipulation. We expect

that other sex ratios studies have found similar results as

ours but have not published due to the lack of significant

results (Hasselquist and Kempenaers 2002). Furthermore,

many of these studies (although not all) used substantially

smaller datasets (more prone to Type I errors) and covered

fewer years, factors that likely affected our results

(Hasselquist and Kempenaers 2002). We sampled nestlings

at the point where the population could most reliably and

safely be censused (~day 6, minimizing exposure risk to

predation). Ideally, every study would also evaluate the sex

ratio at both the clutch completion date and the point of

independence from parental care, thereby assessing the

functional sex ratio for each annual cohort. In the future,

we hope to use radio telemetry to assess post-fledgling

survival. While we could not explain differences between

species, a 2-year study found factors affecting sex ratios to

vary between 2 forest-nesting species using the same

habitats but with differing foraging strategies (Stauss et al.

2005). We hope this work encourages broader studies in

habitats with greater species richness and ecological

diversity, exploring these questions with long-term data-

sets and with multiple species comparisons.
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