Comprehensive Review Of Current Endodontic Sealers

Takashi Komabayashi
Clinical Professor, University of New England College of Dental Medicine, tkomabayashi@une.edu

David Colmenar
University of New England, dcolmenar@une.edu

Nicholas Cvach
University of New England, ncvach@une.edu

Aparna Bhat
University of New England, abhat@une.edu

Carolyn Primus
Augusta University

See next page for additional authors

Follow this and additional works at: https://dune.une.edu/cdm_facpubs

Part of the [Dental Materials Commons](https://dune.une.edu/cdm_facpubs#Dental-Materials), and the [Endodontics and Endodontology Commons](https://dune.une.edu/cdm_facpubs#Endodontics-and-Endodontology)

Recommended Citation

Komabayashi, Takashi; Colmenar, David; Cvach, Nicholas; Bhat, Aparna; Primus, Carolyn; and Imai, Yohji, "Comprehensive Review Of Current Endodontic Sealers" (2020). Dental Medicine Faculty Publications. 14.
https://dune.une.edu/cdm_facpubs/14

This Article is brought to you for free and open access by the Dental Medicine Faculty Works at DUNE: DigitalUNE. It has been accepted for inclusion in Dental Medicine Faculty Publications by an authorized administrator of DUNE: DigitalUNE. For more information, please contact bkenyon@une.edu.
Authors
Takashi Komabayashi, David Colmenar, Nicholas Cvach, Aparna Bhat, Carolyn Primus, and Yohji Imai

This article is available at DUNE: DigitalUNE: https://dune.une.edu/cdm_facpubs/14
Comprehensive review of current endodontic sealers

Takashi KOMABAYASHI¹, David COLMENAR¹, Nicholas CVACH¹, Aparna BHAT¹, Carolyn PRIMUS² and Yohji IMAI³

¹ University of New England College of Dental Medicine, 716 Stevens Avenue, Portland, ME 04103, USA
² Augusta University Dental College of Georgia, 1430 John Wesley Gilbert Drive, Augusta, GA 30912, USA
³ Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-0034, Japan

Corresponding author, Takashi KOMABAYASHI; E-mail: tkomabayashi@une.edu

Endodontic sealers for non-surgical root canal treatment (NSRCT) span many compositions and attributes. This comprehensive review discusses current types of endodontic sealers by their setting reaction type, composition, and properties: zinc oxide-eugenol, salicylate, fatty acid, glass ionomer, silicone, epoxy resin, tricalcium silicate, and methacrylate resin sealers. Setting time, solubility, sealing ability, antimicrobial, biocompatibility, and cytotoxicity are all aspects key to the performance of endodontic sealers. Because sealing ability is so important to successful outcomes, the relative degree of microleakage among all the relevant sealers was calculated by way of a meta-analysis of relevant literature. Compared to AH Plus, tricalcium silicate sealers show the lowest relative microleakage among the sealers assessed, followed by silicone sealers and other non-AH Plus epoxy resin sealers. Tricalcium silicate sealers also exhibit the most favorable antimicrobial effect and excellent biocompatibility. Future sealers developed should ideally combine a hermetic seal with therapeutic effects.

Keywords: Endodontic sealers, Biocompatibility, Bioactivity, Dentin-sealer interface, Sealing ability

INTRODUCTION
Choosing an endodontic sealer for clinical use is a decision that contributes to the long-term success of non-surgical root canal treatment (NSRCT)¹. Sealers are used as a thin tacky paste which functions as a lubricant and luting agent during obturation, allowing the core obturation material, such as gutta-percha points or other rigid materials, to slide in and become fixed in the canal²,³. Sealers can fill voids⁴, lateral canals⁵, and accessory canals where core obturation materials cannot infiltrate⁶-⁷. If the sealer does not perform its function, microleakage may cause NSRCT failure via clinically undetectable passage of bacteria, fluids, molecules or ions between the tooth and restorative material⁸⁻¹⁰. Knowing the qualities and characteristics of an endodontic sealer is critical to determining the best selection and application for each clinical case.

Endodontic sealers are categorized by composition based on setting reaction and composition: zinc oxide-eugenol, salicylate, fatty acid, glass ionomer, silicone, epoxy resin, tricalcium silicate, and methacrylate resin sealer systems (Table 1). Some novel sealers contain fillers or ceramic powders including calcium hydroxide, mineral trioxide aggregate (MTA), and calcium phosphate; however, they are fundamentally composed of the above sealer matrices. Until recently, many review articles were published within sealer types²⁰⁻¹⁶. However, few reviews have been published that cover all sealer types¹⁷,¹⁸. Therefore, in this comprehensive review, a historical perspective of each sealer type will be discussed first, followed by a description of the properties of all sealer types, such as setting time and solubility, sealing ability, antimicrobial activity, and biocompatibility and cytotoxicity. Sealer attributes such as the rheology¹⁹, radiopacity²⁰, and tooth discoloration²¹-²³ have been shown to be satisfactory and will not be discussed in detail.

CURRENT ROOT CANAL SEALERS AND HISTORY

Chelate formation

Many dental luting agents set by way of a chelation reaction, the formation of metal complexes with polydentate (usually organic) ligands²⁴. Two of the most common chelates used in dentistry are eugenolates and salicylates. For eugenolates, the setting reaction starts with water that hydrolyzes the zinc oxide to form zinc hydroxide. The zinc hydroxide and eugenol chelate and solidify²⁵. For salicylates, the ion is calcium, usually formulated using calcium oxide. Although uncommon, fatty acids have also been used as ligands for chelate sealers, in conjunction with zinc oxide.

1. Zinc oxide-eugenol-based sealers

The zinc oxide-eugenol (ZOE) sealer formula developed by Rickert and Dixon²⁶⁻²⁷ in 1931 became Kerr sealer, and the formula developed by Grossman in 1936²⁸ became Proco-Sol sealer (StarDental, Lancaster, PA, USA). The ZOE sealers have been a standard in endodontics since their development, based on their long-term success. ZOE sealers contain zinc oxide powder and eugenol liquid, an essential oil derived from cloves²⁹⁻³⁰. When mixed and placed in moist root dentin, the zinc oxide and eugenol complex to form an amorphous gel³¹. Residual zinc oxide powder remains in the gel, forming a rigid matrix³². Some of these powder-liquid sealers contain silver in the powder component (Kerr formula) which has caused darkening of the teeth. Silver-free formulas that avoid staining were developed to address this issue; including...
<table>
<thead>
<tr>
<th>Type</th>
<th>Product name</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulp Canal Sealer (Kerr, USA)</td>
<td>Powder: Zinc oxide, Precipitated silver, Oleo resin, Thymol iodide
 Liquid: Oil of cloves, Canada balsam</td>
<td></td>
</tr>
<tr>
<td>Proco-Sol (StarDental, USA)</td>
<td>Powder: Zinc oxide, Staybelite resin, Bismuth subcarbonate, Barium sulfate
 Liquid: Eugenol, Sweet oil of almond</td>
<td></td>
</tr>
<tr>
<td>Tubli-Seal (Kerr, USA)</td>
<td>Base: Zinc oxide, Bismuth trioxide, Oil+wax, Thymol iodide, Barium sulfate
 Catalyst: Eugenol, Polyale resin, Annidalin</td>
<td></td>
</tr>
<tr>
<td>Endofill (Dentsply Petrólis Ind, Brazil)</td>
<td>Powder: Zinc oxide, Hydrogenated resin, Bismuth subcarbonate, Barium sulfate, Sodium borate, Dexamethasone Acetate, Hydrocortisone Acetate, Polyoxymethylene, Thymol iodide
 Liquid: Eugenol, Oil of sweet almonds</td>
<td></td>
</tr>
<tr>
<td>Rocanal 2 (La Maison, Switzerland)</td>
<td>Powder: Zinc oxide, Titanium oxide, Orthophenylphenol, Calcium tungstate
 Liquid: Eugenol</td>
<td></td>
</tr>
<tr>
<td>Canals (Showa Yakuhin Kano, Japan)</td>
<td>Powder: Zinc oxide, Barium sulfate, Bismuth subcarbonate, Rosin
 Liquid: Clove oil, Olive oil</td>
<td></td>
</tr>
<tr>
<td>Nishika Canal Sealer Eugenol (Nippon Shika Yakuhin, Japan)</td>
<td>Paste A: Eugenol, Rosin, Ester gum
 Paste B: Olive oil, Zinc oxide, Bismuth subcarbonate</td>
<td></td>
</tr>
<tr>
<td>Master-Dent Root Canal Sealer (Dentonics, USA)</td>
<td>Powder: Zinc oxide, Staybelite resin, Bismuth subcarbonate, Barium sulfate, Sodium borate
 Liquid: Eugenol</td>
<td></td>
</tr>
<tr>
<td>Pulpdent Root Canal Sealer (Pulpdent, USA)</td>
<td>Powder: Zinc oxide, Calcium phosphate, Zinc stearate, Barium sulfate
 Liquid: Eugenol, Canada balsam</td>
<td></td>
</tr>
<tr>
<td>CRCS (Ivoclar Vivadent, Lichtenstein)</td>
<td>Powder: Zinc oxide, Calcium hydroxide, Bismuth dioxide, Barium sulfate
 Liquid: Eugenol, Eucalyptol</td>
<td></td>
</tr>
<tr>
<td>Bioseal (OGNA Pharmaceuticals, Italy)</td>
<td>Powder: Zinc oxide, Natural resin, Calcium hydroxide, Barium sulfate, Hydroxyapatite, Thymol iodide, Zinc acetate
 Liquid: Purified oleoresin, Bi-distilled eugenol</td>
<td></td>
</tr>
<tr>
<td>Sealapex (Kerr, USA)</td>
<td>Base: N-ethyltoluenesulfonamide, Calcium oxide, Zinc oxide, Silicon dioxide
 Catalyst: Methyl salicylate, 2,2-dimethylpropane-1,3-diol, Isobutyl salicylate, Bismuth trioxide, Titanium dioxide pigment, Zinc stearate</td>
<td></td>
</tr>
<tr>
<td>MTA Fillapex (Angelus, Brazil)</td>
<td>Paste A: Methyl salicylate, Butylene glycol, Colophony, Bismus trioxide, Fumed silica, Titanium dioxide, Tricalcium silicate
 Paste B: Fumed silica, Titanium dioxide, Tricalcium silicate, Dicalcium silicate, Calcium oxide, Tricalcium alminate, Pentaerythritol rosinate, p-Toluensulfonamide</td>
<td></td>
</tr>
</tbody>
</table>
Table 1 continued

<table>
<thead>
<tr>
<th>Product</th>
<th>Base</th>
<th>Activator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apexit</td>
<td>Calcium hydroxide, Zinc oxide, Calcium oxide, Silicon dioxide, Zinc stearate, Hydrogenised colophony, Tricalcium phosphate, Polydimethylsiloxane</td>
<td>Trimehtylhexanediol disalicylate, Bismuth carbonate basic, Bismuth oxide, Silicon dioxide, 1,3 Butanediol disalicylate, Hydrogenised colophony, Tricalcium phosphate, Zinc stearate</td>
</tr>
<tr>
<td>Apexit plus</td>
<td>Hydrated collophonium, Calcium hydroxide, Calcium oxide, Silicon dioxide, Phosphoric acid alkyl ester</td>
<td>Disalicylate, Bismuth hydroxide, Bismuth carbonate, Silicon dioxide, Phosphoric acid alkyl ester</td>
</tr>
<tr>
<td>Canals-N</td>
<td>Zinc oxide, Bismuth subcarbonate</td>
<td></td>
</tr>
<tr>
<td>Nogenol</td>
<td>Zinc oxide, Barium sulfate, Bismuth oxychloride, Vegetable oil</td>
<td></td>
</tr>
<tr>
<td>Ketac-Endo</td>
<td>Calcium aluminum lanthanum fluorosilicate glass, Calcium volframate, Silicic acid, Pigments</td>
<td></td>
</tr>
<tr>
<td>GuttaFlow 2</td>
<td>Zirconium oxide, Polymethylvinylsiloxane, Polymethylhydrogensiloxane, Gutta-percha</td>
<td>Zirconium oxide, Polymethylvinylsiloxane, Platinum catalyst</td>
</tr>
<tr>
<td>RoekoSeal</td>
<td>Zirconium oxide, Polymethylvinylsiloxane, Polymethylhydrogensiloxane</td>
<td>Zirconium oxide, Polymethylvinylsiloxane, Platinum catalyst</td>
</tr>
<tr>
<td>AH 26</td>
<td>Bismuth oxide, Hexamethyleneteramine, Silver powder, Titanium oxide</td>
<td></td>
</tr>
<tr>
<td>AH Plus</td>
<td>Bisphenol A diglycidyl ether</td>
<td></td>
</tr>
<tr>
<td>Adseal</td>
<td>Bisphenol A diglycidyl ether–bisphenol A copolymer, 2-Hydroxyethyl salicylate, Calcium phosphate, Bismuth subcarbonate, Zirconium oxide</td>
<td>Poly(1,4-butanediol)bis(4-aminobenzoate), Triethanolamine, Calcium phosphate, Bismuth subcarbonate, Zirconium oxide, Calcium oxideopolymer</td>
</tr>
<tr>
<td>Acroseal</td>
<td>Bisphenol A diglycidyl ether, Calcium hydroxide, Bismuth subcarbonate</td>
<td>Hexamehtylenetetramine, Venice turpentine, Enoxolone</td>
</tr>
<tr>
<td>MM seal</td>
<td>Epoxy oligomer resin, Ethylene glycol salicylate, Calcium phosphate, Bismuth subcarbonate, Zirconium oxide</td>
<td>Poly aminobenzoate, Triethanolamine, Calcium phosphate, Bismuth subcarbonate, Zirconium oxide, Calcium oxide</td>
</tr>
</tbody>
</table>

Salicylate

Zinc oxide-fatty acid

Silicone

Glass ionomer

Epox resin

Adseal

Acroseal

MM seal
Table 1 continued

<table>
<thead>
<tr>
<th>Tricalcium silicate (MTA/Bioceramic)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Grey & Neo MTA Plus (NuSmile Avalon Biomed, USA)</td>
<td>Powder</td>
</tr>
<tr>
<td>BioRoot RCS (Septodont, France)</td>
<td>Powder</td>
</tr>
<tr>
<td>Endo CPM Sealer (EGEO, Argentina)</td>
<td>Powder</td>
</tr>
<tr>
<td>iRoot SP/ EndoSequence BC/ Total Fill BC/ Edge Endo Sealer (Innovative Bioceramix, Canada)</td>
<td>One paste</td>
</tr>
<tr>
<td>Ceraseal (MetaBiomed, Korea)</td>
<td>One paste</td>
</tr>
<tr>
<td>Endoseal MTA (Maruchi, Korea)</td>
<td>One paste</td>
</tr>
<tr>
<td>Bio-C Sealer (Angelus, Brazil)</td>
<td>One paste</td>
</tr>
<tr>
<td>EndoREZ (Ultradent, USA)</td>
<td>Base</td>
</tr>
<tr>
<td>Epiphany (Resilon Research, USA)</td>
<td>Paste A</td>
</tr>
<tr>
<td>MetaSEAL (Hybrid Root SEAL) (Parkell, USA)</td>
<td>Powder</td>
</tr>
<tr>
<td>Super-Bond RC Sealer (Accel) (Sun Medical, Japan)</td>
<td>Powder</td>
</tr>
<tr>
<td></td>
<td>Catalyst</td>
</tr>
</tbody>
</table>

UDMA: urethane dimethacrylate, PEGDMA: polyethyleneglycol dimethacrylate, EBPADMA: ethoxylated bisphenol A dimethacrylate, Bis-GMA: bisphenol A-glycidyl methacrylate, 4-META: 4-methacryloxyethy trimellitate anhydride, HEMA: 2-hydroxyethyl methacrylate

Wach’s Paste, the Grossman formulas, Proco-Sol sealer, followed by Tubli-Seal sealer (Kerr, Orange, CA, USA). ZOE sealers remain popular because of slow set, low cost, antibacterial properties, and ease of use. Although Roth sealer (Roth International, Chicago, IL, USA) was discontinued in 2018, many are currently commercially available: Pulp Canal Sealer (Kerr), Proco-Sol sealer, Tubli-Seal endofill (Dentsply Trubyte Ind, Rio de Janeiro, Brazil), Rocanal 2 (La Maison, Balzers, Switzerland), Canals (Showa Yakuhin Kano, Tokyo, Japan), Nishika Canal Sealer Eugenol (Nippon Shika Yakuhin, Shimonoseki, Japan), Master-Dent Root Canal Sealer (Dentonics, Charlotte, NC, USA), and Pulpdent Root Canal Sealer (Pulpdent, Watertown, MA, USA).

Variations in ZOE sealers have been introduced over several decades. A ZOE-containing paraformaldehyde sealer was developed but was unsuccessful because formaldehyde causes coagulative necrosis, and residual formaldehyde disrupts local repair of affected areas. This sealer was toxic to periradicular tissues and contraindicated. Sargenti introduced N2 sealer in 1973, which contained lead and mercury. The toxic metals were reported to be found in distant organ systems, having migrated from the radicular spaces. N2 was not
cleared by the U.S. Food and Drug Administration58.

ZOE sealers are also a common matrix for sealers with therapeutic additives. For example, Calciobiotic Root Canal Sealer, CRCS, (Coltene/Whaledent, Cuyahoga Falls, OH, USA), is a ZOE sealer marketed as a “calcium hydroxide sealer”39. Bioseal (OGNA Pharmaceuticals, Muggiò, Italy) is a ZOE-based sealer with added hydroxyapatite40, but no special therapeutic effects have been reported.

2. Salicylate-based sealers
Salicylate-based sealers are typically referred to by their marketed therapeutic additives instead of by their composition. For example, Sealapex (Kerr) and Apexit/Apexit Plus (Ivoclar Vivadent, Schaan, Lichtenstein) are examples of a calcium-hydroxide-containing salicylate sealers. Calcium hydroxide [Ca(OH)\textsubscript{2}] is both alkaline and antimicrobial, desirable qualities for a therapeutic sealer41. However, calcium hydroxide does not set and is slightly soluble in water. It must be used within a matrix to be an effective sealer42. Sealers containing calcium hydroxide were intended to promote osteogenesis and cementogenesis as well as create an antimicrobial environment43. So-called “calcium hydroxide sealers” are often placed in their own sealer type categories when differentiating sealers. Despite this, all traditional “calcium hydroxide sealers” are composed of another luting matrix.

Unfortunately, Sealapex and Apexit/Apexit Plus have not demonstrated the clinical effects desired11,44, while Sealapex and calcium hydroxide encourage apical closure by cementum deposition45. The solvation of calcium hydroxide is required if therapeutic effects are to be achieved11,41,46,47. Effective sealers, however, should not be soluble and should remain intact for as long as possible48.

Similar to the above sealers, MTA Fillapex (Angelus, Londrina, Brazil) is a unique salicylate resin-based sealer that contains 15% MTA powder49. MTA Fillapex should not be regarded as a tricalcium silicate (MTA, a bioactive ceramic) sealer since its composition is primarily resin49. However, many researchers have wrongly referred to this sealer as “MTA-based”.

3. Fatty acid-based sealers
Eugenol is known to be a cytotoxic agent that affects a cell’s membrane and respiratory functions, and clinician preparation of ZOE sealers can also affect cytotoxic outcomes50-53. As a result, non-eugenol zinc oxide sealers were developed to avoid issues with post-operative healing. Fatty acids are used instead of eugenol as chelating agents, although the structure of their metal complexes are typically less defined and consistent than with eugenolates and salicylates by nature of their mixed compositions. Canals-N (Showa Yakuhin Kako) is a fatty acid-zinc oxide sealer that uses linoleic acid, isostearic acid, and rosin49. Rosin contains several resin acids, the most abundant being abietic acid, which are derived from coniferous trees54. Nogenol (GC America, Alsip, IL, USA) is another fatty acid-zinc oxide sealer made with lauric acid.

Ionomer formation
1. Glass ionomer-based sealers
Glass ionomer sealer products are made by mixing a fine silicate glass powder with polyacrylic and related acids. When mixed, they form repeating subunits of organic monomer and inorganic ions, creating an ionomer50. These materials are used for cements and restoratives in dentistry. Glass ionomer cement sealer, KT-308 (GC, Tokyo, Japan), releases fluoride to prevent decay and bond to tooth structure50, but this product is no longer commercially available. Ketac-Endo (3M ESPE, St. Paul, MN, USA), a glass ionomer sealer, is available in some parts of the world.

Polymer formation by addition reaction
Silicone and epoxy resin-based sealers both polymerize by way of addition reactions. Addition reactions are differentiated from other polymerization reactions because they co-generate other products (usually water)47. Silicone-based sealers form a three-dimensional polymer network by addition polymerization as a series of cross-linkage between divinylpolyisoxilane and polyethylene glycol with a platinum salt as the catalyst49. Epoxy resin-based sealers follow a more traditional organic addition reaction, where epoxide monomers react with amines to create a rigid material50.

1. Silicone-based sealers
In 1972, Davis et al. used injectable silicone impression material into the prepared root canals49. Silicone-based sealers are composed of polydimethylsiloxane containing a platinum salt and polyethylene glycol and set by addition reaction between vinyl groups attached to polydimethylsiloxane chain and hydroxyl groups attached to polydimethylsiloxane chain, forming polymer48. GuttaFlow, GuttaFlow 2, and RoekoSeal (Coltene/Whaledent) are examples of silicone-based sealers51,42. GuttaFlow is triturator-mixed and requires the use of a single master cone whereas GuttaFlow 2 and RoekoSeal are auto-mix.

2. Epoxy resin-based sealers
Epoxy resin was invented in 1938 by P. Castan, a Swiss chemist of de Trey (Zurich, Switzerland), and AH 26 was developed by the same company during 1940s. A prototype AH 26 was clinically tested in the early 1950s49. Guttsuo studied AH 26 using rat in 1963 and found moderate tissue response in 16 days49. Feldmann and Nyborg found AH 26, implanted after one day hardening, caused much more tissue irritation than did pure silver in rabbit study in 196449. In 1993, Spångberg et al. reported that AH 26 releases formaldehyde48, which recommended transition from AH 26 to AH Plus, which does not release formaldehyde. Epoxy resin-based sealers, such as AH 26 and AH Plus (Dentsply Sirona, Konstanz, Germany), are composed of low molecular...
weight epoxy resins and amines and set by addition reaction between epoxide groups attached to epoxy resins and amines to form polymer.

AH 26 exists in a powder-paste mixture while AH Plus exists in a paste-paste mixture. When sold in an automatic mixing syringe, AH Plus is known as AH Plus Jet. In the United States, AH Plus and AH Plus Jet are sold under several other names, including ThermoSeal Plus and Ribbon sealer, respectively. AH Plus is also known as AH Plus Jet, EndoSeal Plus and Ribbon sealer, respectively. AH Plus is also known as TopSeal in Europe, Central America, and South America. Adseal (Meta Biomed, Cheongju, Republic of Korea), Acroseal (Septodont, Saint-Maur-des-Fossés, France), and MM seal (Micro-Mega, Besançon, France) are also commercially available.

Hydration

1. Tricalcium silicate-based (MTA/bioceramic) sealers

Introduced by Torabinejad and White in the 1990s\(^{67}\), MTA is a ceramic cement based on the hydraulic powders of tricalcium silicate and dicalcium silicate. These ceramic powders are the same ceramic phases present in Portland cement\(^{47}\), but the dental products are more pure, finer powders, and include radiopaque excipients. Calcium silicate cements and calcium hydroxide are bioactive; that is both ceramics release calcium and hydroxide ions\(^{70}\). The ions induce the formation of hydroxyapatite on their surface and an osteogenic effect\(^{27}\). Since their introduction the tricalcium silicate-based sealers began with Hydron (Hydron Technologies, St. Petersburg, FL, USA)\(^{88,89}\), which appeared on the market during the mid-1970s\(^{90,92}\). Wichterle and Lim, contact lens researchers, developed Hydron in the 1960\(^{89}\). It was composed of 2-hydroxyethyl methacrylate polymer gel for injection in the canal without the need for a core, such as gutta-percha. However, because of its short working time, very low radiopacity, problems associated with removal from canals, and tendency to irritate the periapical tissues, its use was discontinued in the 1980s\(^{88}\).

At the beginning of the 21st century, the desire for bonding between dentin and sealing materials gave way to the second generation of methacrylate sealers. EndoREZ (Ultradent, South Jordan, UT, USA) is a dual-cure sealer that does not require a dentin adhesive\(^{94}\). The setting mechanism of single-paste tricalcium silicate-based sealers is water absorption from dentin tubules\(^{66}\) with the concomitant formation of HA at the surface within the canals. EndoSequence BC Sealer is used with a single-cone technique, a viable option for obturation in NSRCT\(^{61,85}\). Other single-paste sealers containing tricalcium silicate and organic liquids are known: NeoMTA Plus, BioRoot RCS, and Endo P.

Some companies have marketed the tricalcium silicate materials as "bioceramics" or "biosilicates", but these terms are too general since many dental materials are bioceramics\(^{15,86}\). The tricalcium silicate materials are distinguished by their bioactivity; that is, their ability to form hydroxyapatite on their surface and an osteogenic effect\(^{87}\).

Polymer formation by radical polymerization

1. Methacrylate resin-based sealers

The first generation of methacrylate resin-based sealers began with Hydron (Hydron Technologies, St. Petersburg, FL, USA)\(^{88,89}\), which appeared on the market during the mid-1970s\(^{90,92}\). Wichterle and Lim, contact lens researchers, developed Hydron in the 1960\(^{89}\). It was composed of 2-hydroxyethyl methacrylate polymer gel for injection in the canal without the need for a core, such as gutta-percha. However, because of its short working time, very low radiopacity, problems associated with removal from canals, and tendency to irritate the periapical tissues, its use was discontinued in the 1980s\(^{88}\).

At the beginning of the 21st century, the desire for bonding between dentin and sealing materials gave way to the second generation of methacrylate sealers. EndoREZ (Ultradent, South Jordan, UT, USA) is a dual-cure sealer that does not require a dentin adhesive\(^{94}\). The second generation of methacrylate-based sealers make use of formulations containing self-etching primers, beginning with Resilon/Epiphany (Resilon Research, Madison, CT, USA); functionally, this addition is analogous to the "all-in-one" adhesives used in restorative dentistry\(^{89}\). The Resilon/Epiphany system
was an alternative to conventional gutta-percha/sealer system98,99). The Epiphany primer etched and conditioned the dentinal surface of the canal by demineralizing it and exposing the collagen matrix98. The contents of the primer allowed the Epiphany sealer to bond covalently to the dentinal surface during polymerization. The sealer also covalently bonded to the Resilon cone, thereby achieving the monoseal desired with methacrylate-based systems. The Resilon cones contained bioactive glass, which could be resorbed. Because the dentinal wall, sealer and cone are covalently bonded, they form a single unit, known as a monoblock99. RealSeal SE (Kerr) was a commercial product similar to Epiphany98,100 but with less etching ability than RealSeal101. These systems are no longer sold because they were susceptible to degradation of their ester bonds102.

Fourth-generation methacrylate-based sealers include a combination of self-activating etchant, primer, and sealer. Hybrid Root SEAL (Sun Medical, Shiga, Japan), also commercialized as MetaSEAL (Parkell, Edgewood, NY, USA) in the United States, is the first commercially available sealers of this generation103. Hybrid Root SEAL hybridized dentin more resistant to low pH104, which was most effective after EDTA irrigation105 and may reduce microleakage106.

Super-Bond RC Sealer (Accel) (Sun Medical) is a commercially available methyl methacrylate-tributyl borane (MMA-TBB) resin sealer which uses TBB as an initiator and to induce interfacial polymerization of MMA at the dentin interface107,108. TBB has been shown to cause graft polymerization of MMA onto dentin collagen, creating a collagen-MMA graft polymer108,109. Syudo and Hayashi in 2010 introduced a “floating with accessory point technique” using Super-Bond RC Sealer (Accel). This technique has become synonymous with the single cone technique where the master cone gutta-percha point need not touch the canal walls because its “floating” in the sealer. The benefit of “floating” assures interfacial adhesion between dentin and the sealer for hermetic sealing. After placement of a floating master cone gutta-percha point and accessory points may be inserted to reduce voids/bubbles and increase interfacial contact for adhesion110,111. They also noticed the mixed layer of the resin and gutta-percha at the interface of the canal walls, sealer, and gutta-percha bonded, creating monoblock.

Simultaneous treatment for root canal filling and core construction (STRC), a technique developed by Masaka et al., uses MMA-TBB resin to adhere a fiber post system. The fiber post has an elastic modulus similar to dentin, unlike metal posts, making it more suitable for mimicking masticatory stress and strain112. STRC uses the fiber post system replacing gutta-percha points with a minimum condensing force during the root canal obturation process. STRC is beneficial because it minimizes the number of patient clinical visits and may prevent vertical root fractures as a result of monoblock formation. An outcome study of STRC reports a five year success rate of 90.9%113. While EndoSequence BC Sealer’s single-cone obturation technique in NSRCT114,115 exists, STRC may prove to be a more successful concept for obturation.

PROPERTIES OF SEALERS

An ideal endodontic sealer provides a complete microscopic seal such that microbes cannot pass through the root canal system; it possesses antimicrobial activity against a range of common periodontal microbes, and it accomplishes these goals without causing an inflammatory response in host tissues or demonstrating cytotoxicity. Contemporary sealers excel for some criteria but fall short when evaluated for all of them. The ADA 57 and International Organization for Standardization (ISO) 6876 standards116 provide some useful tests for measuring sealer attributes, but these tests are not sufficient to determine the performance of one sealer over another. According to the methods in the documents, antimicrobial testing is not part of these standards, and ISO 7045 is used for biocompatibility testing. Following is a proposed modified list of criteria for an endodontic sealer: 1. make a hermetic seal, 2. be tacky and preferably adhesive to dentin and obturation material between it and the canal wall when set, 3. contain fine powders, preferably for anatomical accommodation, 4. radiopacity, 5. dimensionally stable with limited changes before and after setting, 6. color stable, 7. bacteriostatic or antibacterial, 8. set slowly enough for the obturation procedure, 9. insoluble in tissue fluids, 10. biocompatible, including non-mutagenic, non-sensitizing, and non-cytotoxic after setting, 11. capable of removal for retreatment by chemical or mechanical means, 12. preferably bioactive, stimulating the formation of hydroxyapatite in contact with body fluids.

Setting time and solubility

Setting time and solubility are critical components in the sealing ability of sealers. Setting time in particular is clinically important for endodontic treatment. Slow setting times allow for sealer to more readily penetrate intricate canal morphology even after treatment117. Faster setting times may be indicated in time sensitive situations, such as when obturation must be completed quickly or a post must be placed sooner.

Setting times for ZOE sealers have shown considerable variation. Among research studies, the setting time of Proco-Sol varies by an order of magnitude (40.5 min to 42 h). Tubli-SEal has been shown to have a setting time of approximately one hour109,110. The need for water to initiate ZOE setting may lead to variations. ISO 6876 requires less than 3% solubility of sealers in distilled water, and ZOE sealers like Pulp Canal Sealer have met this requirement. However, for retreatment, solubility in a solvent other than water is useful. ZOE sealers showed weight losses of 5.19% in halothane, over 10 min, indicating moderate solubility in common re-treatment solvents117.

Ketac-Endo, a glass ionomer sealer, was found to have a setting time of 2.5 h118. Glass ionomer sealers were also found to have 1.6% solubility in water, which meets...
the ISO 6876 and ADA 57 limits of 3% weight loss119. With regard to solvent solubility for re-treatment, glass ionomer sealers were the least soluble in halothane, with weight loss of less than 1% after being exposed for 10 min117.

GuttaFlow, a silicone-based sealer, was found to have a setting time of 17.4 min, the shortest setting time of sealer types considered128. GuttaFlow had only 0.13% solubility in water, meeting the ADA and ISO specifications for solubility119.

Setting times for tricalcium silicate-based sealers, including EndoSequence BC Sealer, also known as iRoot SP have even been shown to exceed one month123, however the setting times for BioRoot RCS, Bio-C, and CeraSeal sealers are 4, 3, and 3.5 h. Tricalcium silicate sealers such as BioRoot RCS and TotalFill BC sealer were found to have significantly higher solubility in distilled water than comparable market sealers of different compositions122. The solubility may be attributed to the formation of calcium hydroxide during setting of tricalcium silicates, which is dissolved in the ISO 6876 solubility test123. Although there are no current studies on the solubility of tricalcium silicate-based sealers in organic solvents like halothane, one study evaluating re-treatment found that the re-treatment of maxillary incisors containing EndoSequence BC Sealer with chloroform, an organic solvent that was formerly commonly used, was more facile than without124. However, the same study found EndoSequence BC Sealer had significantly more residual material remaining after re-treatment compared with AH Plus126. Acids will dissolve tricalcium silicate-based sealers, but the solubility may be too slow for re-treatment. From a clinical perspective, using ultrasonic instruments is more practical than use of solvents for the tricalcium silicate sealers125.

AH 26 and AH Plus have been shown to have setting times of 34 and 8 h, respectively126,128. AH Plus meets ISO solubility requirements122, with 0.16% solubility in water119. AH Plus was significantly more soluble in halothane, yielding 68% weight losses after 10 min117, making re-treatment viable with a solvent.

Super-Bond RC Sealer (Accel), a methacrylate resin-based sealer, was shown to have a setting time of 42 min126. Two methacrylate resin-based sealers, EndoREZ and Epiphany, were shown to have 3.5–4% solubility in water, which did not meet ADA 57 or ISO 6876 specifications119.

Sealapex, a salicylate-based sealer, was found to have an average setting time of 58 min, which is shorter than that of ZOE sealers. Poggio et al. reported that Sealapex met the ISO 6876 solubility requirements122. Solubility in halothane for the salicylate-based sealer such as Apexit was comparable with that of ZOE sealers117.

In summary, setting times for most sealer types were acceptable and well above one hour, with the exception of silicone-based sealers, which had markedly shorter setting times. Solubility depends on sealer matrix chemistry. For re-treatment, mechanical removal of a sealer will be useful for tricalcium silicate-based sealers and resin-based sealers.

Sealing ability

Sealing ability is of the utmost importance in sealer. Although many microleakage studies have been published, direct comparison of each sealer is difficult because experimental condition was different in each experiment/research. In many papers each sealer was tested together with AH Plus. Thus it will be convenient to compare sealing ability of each sealer by using AH Plus as a standard. The relative degree of microleakage was calculated by length of microleakage of each sealer divided by that of AH Plus. Table 2 summarizes comparisons of the degree of microleakage of different sealer types. To generate sufficient data on microleakage, an electronic search was conducted using the PubMed database (www.ncbi.nlm.nih.gov) to find studies that evaluated microleakage of the various sealers. “AH Plus”, “Leakage”, and “Sealing” were used as key words. Articles were limited to full-text articles written in English. The electronic search gave 152 publications. After screening by title and abstract, studies were retrieved and then read for relevance. Articles were included if they included microleakage measurements with the sealer types in question. Following discussion, 64 articles out of the 152 searched satisfied criteria and were included. Data points within the articles that compared the microleakage of different sealers were included in calculations for Table 2. Seventy two data points were used: 5 data points for tricalcium silicate (EndoSequence BC) sealers127-130, 6 data points for silicone sealers131-136, 7 data points for glass ionomer (Ketac-Endo)132,139,142,148,150,151, 8 data points for epoxy resin sealers (other than AH Plus)131,137-141, 9 data points for salicylate sealers130,136,139,142,147, 13 data points for zinc oxide-eugenol133,138,144,146,148,149, and 6 data points for Hybrid Root SEAL128,129,157. Some references contained data on more than one sealer; therefore, the total number of data points is more than the number of references.

Several methods have been used to assess microleakage: dye penetration, fluid filtration, glucose penetration, microbial leakage, and electrochemical leakage tests. To compare the leakage results, independent of each physicochemical method, individual measurements were converted into a ratio using AH Plus (with gutta-percha) as a standard. Sealing ability was also evaluated independent of time and as a whole. That is, time dependent measurements (e.g. microleakage at one day, one week, etc.) were averaged. For example, Bouillaguet et al. stated that within the 6th h of obturation, AH Plus exhibited a microleakage of 0.17 μL/min using the fluid filtration method, while GuttaFlow exhibits a microleakage of 0.08 μL/min. GuttaFlow therefore has 0.47 times the microleakage of AH Plus within the 6th h for this individual study130. Ratios were calculated and averaged by sealer type. Minima, maxima, and medians were determined for the
Table 2 Comparisons of the degree of microleakage of different sealer types

<table>
<thead>
<tr>
<th>Sealer Type</th>
<th>Type</th>
<th>No. of Data</th>
<th>Degree of leakage relative to GP/AH Plus</th>
<th>Leakage</th>
<th>References</th>
<th>No. of Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>Minimum</td>
<td>Maximum</td>
<td>Median</td>
</tr>
<tr>
<td>Endosequence BC, iRoot SP</td>
<td>Tricalcium silicate</td>
<td>5</td>
<td>0.78</td>
<td>0.38</td>
<td>1.51</td>
<td>0.67</td>
</tr>
<tr>
<td>GuttaFlow, Roeko Seal</td>
<td>Silicone</td>
<td>6</td>
<td>0.83</td>
<td>0.19</td>
<td>1.84</td>
<td>0.65</td>
</tr>
<tr>
<td>AH26, MM seal</td>
<td>Epoxy resin (other than AH Plus)</td>
<td>7</td>
<td>0.84</td>
<td>0.46</td>
<td>1.32</td>
<td>0.90</td>
</tr>
<tr>
<td>MTA Fillapex, Apexit, Sealapex</td>
<td>Salicylate</td>
<td>9</td>
<td>0.98</td>
<td>0.39</td>
<td>1.75</td>
<td>0.94</td>
</tr>
<tr>
<td>Resilon/Epiphany</td>
<td>Methacrylate</td>
<td>22</td>
<td>0.98</td>
<td>0.35</td>
<td>2.34</td>
<td>0.82</td>
</tr>
<tr>
<td>Roth, Pulp Canal Sealer, ZOE</td>
<td>Zinc oxide-eugenol</td>
<td>6</td>
<td>1.15</td>
<td>0.82</td>
<td>1.44</td>
<td>1.15</td>
</tr>
<tr>
<td>Ketac-Endo</td>
<td>Glass ionomer</td>
<td>6</td>
<td>1.15</td>
<td>0.85</td>
<td>1.61</td>
<td>1.08</td>
</tr>
<tr>
<td>EndoRez</td>
<td>Methacrylate</td>
<td>6</td>
<td>1.17</td>
<td>0.70</td>
<td>1.58</td>
<td>1.18</td>
</tr>
<tr>
<td>Hybrid Root SEAL/MetaSEAL</td>
<td>Methacrylate</td>
<td>5</td>
<td>1.33</td>
<td>0.98</td>
<td>2.14</td>
<td>1.21</td>
</tr>
</tbody>
</table>

The degree of relative microleakage of the above sealers is expressed in a ratio against AH Plus.
* AH Plus therefore has a relative degree of microleakage equal to 1.0.
** Sealers with a relative degree of microleakage less than 1.0 are considered to have less microleakage than AH Plus.
*** Sealers with a relative degree of microleakage more than 1.0 are considered to have more microleakage than AH Plus.
^ Total number of data points: 72
^^ Total number of references: 64
Since some references contain more than one sealer reported, total number of references and total number of data points are not the same.

The degree of relative microleakage of the above sealers is expressed in a ratio against AH Plus.
* AH Plus therefore has a relative degree of microleakage equal to 1.0.
** Sealers with a relative degree of microleakage less than 1.0 are considered to have less microleakage than AH Plus.
*** Sealers with a relative degree of microleakage more than 1.0 are considered to have more microleakage than AH Plus.
^ Total number of data points: 72
^^ Total number of references: 64
Since some references contain more than one sealer reported, total number of references and total number of data points are not the same.

data sets to describe the ranges of relative sealing ability in the literature. We noted that dye penetration for AH Plus/gutta-percha was: minima 0.37 mm and mean 2.49 mm in 18 tests. Dye was noted in every sealer regardless of type, suggesting that a complete microscopic seal is not achievable with contemporary sealers. EndoSequence BC, a tricalcium silicate sealer, exhibited the lowest mean relative microleakage across the studies. In stereoscopic dye leakage tests, EndoSequence BC Sealer showed less leakage than AH Plus, Resilon/Epiphany, and ZOE-based sealers. However, dye leakage studies are inherently flawed for tricalcium silicate cements, as they absorb water until full setting. Tricalcium silicate sealers other than EndoSequence BC had mixed results. SEM studies indicated inadequate micro-sealing for Endo CPM Sealer, which had poor adaptation to canal walls.

ProRoot MTA, which is not indicated as a sealer, had significantly more microleakage when used as a sealer compared with epoxy resin-based sealers AH 26 and Adseal in the dye diffusion test in extracted human teeth stereo-microscopically.

Silicone sealers, which include RoekoSeal and GuttaFlow, had the second lowest relative microleakage. These materials have a low surface tension, which allows for a high flow and low film thickness, enabling the sealer to fill intricate anatomy. RoekoSeal had the better sealing ability than GuttaFlow when measured with a dye diffusion test in extracted human teeth sectioned both horizontally and vertically. RoekoSeal has been found to expand 0.2% upon setting, exceeding the ADA 57 requirement, which may be beneficial. However, silicone sealers only seal the root mechanically (much like a polyvinylsiloxane impression material), and do not create a monoseal bond at the dentin-sealer interface.

Epoxy resin sealers other than AH Plus, namely AH 26 and MM Seal, provided nearly the same low relative microleakage.
leakage as the silicone sealers; these two sealers also showed better sealing performance than AH Plus. The sealing performance of epoxy resin-based sealers can be compromised due to leaks introduced by polymerization shrinkage.(17) Epoxy resin-based sealers have been shown by stereomicroscopy to have moderate sealing capacity, but superior to ZOE-based sealers.(136)

Salicylate resin sealers, which include MTA Fillapex, Sealapex, and Apexit, performed the closest to AH Plus. Apexit seals moderately well compared to ZOE, AH Plus, and RocooSeal Automix, based on the cross-sectional stereomicroscopic analysis of extracted teeth.(136) The salicylate-based MTA Fillapex sealer had more microleakage than conventional epoxy resin-based sealers in a dye penetration study.(169)

ZOE sealers demonstrate more microleakage than AH Plus and any of the above-mentioned sealers. Glass ionomer sealers had an identical mean microleakage ratio to ZOE sealers.(136) From the maxima and minima determined for the data set, glass ionomer sealers exhibit marginally more microleakage than ZOE sealers. Glass ionomer sealers have proven to be less than satisfactory with considerable failure risk and inadequate bonding with gutta-percha.(118,136,172) De Gee \textit{et al.} explained that glass ionomer sealers have low sealing capacity due to leakage pathways at the dentin-sealer interface.(119)

The variations among methacrylate resin sealers is seen in Table 2. Evaluations of Resilon/Epiphany’s sealing ability affirm the monoseal behind methacrylate systems. When compared with gutta-percha and other sealers in dye leakage studies, Resilon/Epiphany resulted in less microleakage up to three months after obturation.(173) Bacterial leakage tests with \textit{Streptococcus mutans} and \textit{Enterococcus faecalis} reflect lower microleakage as well.(169) The Resilon/Epiphany system performed identically to salicylate resins.

Super-Bond RC Sealer, another methacrylate resin sealer, proved to have a better microseal than both Tubli-Seal and Ketac-Endo sealers, in a dye penetration study with stereomicroscopy.(174) Resin shrinkage occurs as polymerization begins within the resin. Shrinkage of MMA-TBB resins has been shown to begin at the dentin interface, which creates superb bonding between the resin and dentin and a tight seal.(175) Interfacial initiation of the polymerization mechanism begins on the dentin side, where the resin is attracted during polymerization, and leads to the elimination of gap formation between the dentin and resin.(170) The dye penetration of Endoresin-2, an experimental MMA-TBB resin sealer, was 0.17 mm after 2 days, far less than the minimum value of 0.37 mm reported for AH Plus. Methacrylate resins have also been used with obturation material other than gutta-percha to create a monoseal, with the sealer bonding to both radicular dentin and the core material.(169)

\textbf{Antimicrobial activity}

Antimicrobial activity can be directly caused by a sealer, or indirectly cause by entombing bacteria. Any endodontic sealer that does make a hermetic sealer functions to entomb bacterial within the canal and tubules, preventing communication of residual bacteria to the apical tissue.(176) However, bacteria present at the apex may not be entombed, and would be killed by an antimicrobial endodontic sealer.

Zinc oxide is a well-documented antimicrobial material because it forms a reactive oxygen species and interferes with bacterial membrane proteins.(177) ZOE sealers have better antimicrobial effects in a zone of inhibition test for \textit{Streptococcus mutans}, \textit{Staphylococcus aureus}, and \textit{Enterococcus faecalis}, compared with multiple epoxy resin-based sealers.(178) Fluoride ions inhibit also bacterial growth, but glass ionomer sealers have demonstrated minimal antimicrobial activity.(179) In general, silicone-based sealers are not antimicrobial. For instance, a zone of inhibition study with \textit{Enterococcus faecalis} using of GuttaFlow 2 gave the same results as control groups without sealers.(180) Kapralos \textit{et al.} found that GuttaFlow 2 and RoekoSeal have no antibacterial activity against the planktonic growth or 24-h biofilms of \textit{Streptococcus mutans}, \textit{Staphylococcus aureus}, \textit{Staphylococcus epidermidis}, and \textit{Enterococcus faecalis}.(181)

Evaluations of the antibacterial properties of MTA-type material (including non-sealer tricalcium silicates) have been confusing and sometime contradictory. In a study by Torabinejad \textit{et al.}, MTA was demonstrated to have an antimicrobial effect on facultative bacteria and no effect on obligate anaerobes.(182) Several disk diffusion studies show that MTA and Portland cement have little to no inhibitory effect on species like \textit{Staphylococcus aureus}, \textit{Enterococcus faecalis}, and \textit{Candida albicans}.(183-185) In disk diffusion studies, MTA and Portland cements had antimicrobial effects at least on par with other sealers like ZOE, salicylate-based (Sealapex), and epoxy resin (AH Plus).(185-187) For similar studies testing only \textit{Enterococcus faecalis}, tricalcium silicate-based sealers like EndoSequence BC Sealer exhibited greater antibacterial properties than did ZOE and epoxy resin sealers.(186) It has been demonstrated that tricalcium silicate-based sealers increase the local pH through the release of calcium and hydroxide ions, for adding an antimicrobial effect.(189) In the same planktonic growth and 24-h biofilm study, Kapralos \textit{et al.} also found that TotalFill BC Sealer had notable antibacterial effect on planktonic bacteria after 7 days, along with an antibacterial effect on biofilms for \textit{Staphylococcus aureus} and \textit{Enterococcus faecalis}.(181) The same antibacterial effects of calcium hydroxide must accrue to the tricalcium silicates (MTA-type materials) because of the formation of calcium hydroxide as a reaction product from the tri- and di-calcium silicates.

AH Plus sealer had better antimicrobial activity only when compared with GuttaFlow but was less antimicrobial than MTA Fillapex (salicylate-based sealer) and CRCS (ZOE sealer).(185) Compared with other sealer types, epoxy resin sealer (AH Plus) showed no significant difference in antimicrobial activity for \textit{Enterococcus faecalis}. Zone of inhibition tests for a AH Plus were comparable with those for ZOE sealers with \textit{Enterococcus faecalis}. However, Kapralos \textit{et al.} found...
that AH Plus had the highest antibacterial activity on both planktonic and biofilm bacteria, but only lasting 24 h.\(^{190}\) As stated previously, tricalcium silicate-based sealers/cements (EndoSequence BC Sealer and ProRoot MTA) had higher antimicrobial activity for *Enterococcus faecalis* than both epoxy resin (AH Plus) and ZOE sealers.\(^{180,188}\) The methacrylate resin-based sealer EndoREZ had the strongest antibacterial activity among comparable sealers AH Plus and Sealapex.\(^{201}\) In an agar diffusion test with plated strains, *Micrococcus luteus* (ATCC9341), *Staphylococcus aureus* (ATCC6538), *Pseudomonas aeruginosa* (ATCC27853), *Candida albicans* (ATCC 10231), and *Enterococcus faecalis* (ATCC 10541), MTA Fillapex, as well as MTA powder, were found to have antimicrobial activity against all tested strains.\(^{185,190}\)

Despite limitations, calcium hydroxide-containing sealers have several benefits. CRCS, for example, exhibited better antimicrobial activity than epoxy resin (AH Plus) and MTA sealers when tested against *Enterococcus faecalis* on agar.\(^{190}\) Calcium-hydroxide-based sealers proved to have a greater zone of inhibition than ZOE sealers.\(^{190}\) Supercal (Ozdent, Sydney, Australia), another calcium-hydroxide-containing glycerol sealer, was more antibacterial than MTA and AH Plus sealers.\(^{190}\)

Biocompatibility and cytotoxicity

ZOE sealers have been shown to be both an irritant and cytotoxic agent\(^{194,195}\) and activate a complement-mediated immune response as well as significant fibroblast cytotoxicity.\(^{196,197}\) When implanted subcutaneously in rats, eugenol inhibited the adhesion of immunocompetent cells such as macrophages and also showed more cytotoxic impact on human periodontal ligament than did ceramic powders such as zinc oxide, titanium oxide, or barium sulfate, which are known to be biocompatible.\(^{199}\) Because eugenol is cytotoxic and evokes an inflammatory response, zinc oxide non-eugenol sealers such as Canals-N\(^{229}\) and Nogenol\(^{200,201}\) are available in Japan and the United States.

Glass ionomer sealers have also been shown to cause inflammation when implanted subcutaneously into rats, although the inflammation was not histologically detectable after three months.\(^{202}\) Glass ionomer cement (Fuji II, GC) had lower cytotoxicity when freshly mixed compared with resin (Chem-fil II, De Trey, Wiesbaden, West Germany).\(^{200}\) However, the same studies found that fully set, glass ionomer cement was more cytotoxic than Chem-fil II after setting, because of its fluoride ion release.\(^{200}\) Glass ionomer products have demonstrated a low level of cytotoxicity over long periods of time, indicating they consist of very biocompatible material.\(^{204,205}\)

Silicone sealers are recognized as biocompatible, beneficial characteristic of these sealers. Significantly lower cytotoxicity was found when compared with epoxy resin sealers (AH 26 and AH Plus) during the first 11 days of fibroblast suspension cultures, and similar cytotoxicity was measured after 24 h.\(^{206,207}\) GuttaFlow was determined to be biocompatible in a fibroblast incubation test.\(^{180}\)

Tricalcium silicate-based sealers have exhibited both beneficial and deleterious effects in terms of biocompatibility.\(^{180}\) BioRoot RCS and EndoSequence BC Sealer exhibited no cytotoxic effects on human bone marrow mesenchymal cells when compared to AH Plus; EndoSequence BC Sealer has also been shown to have strong cell viability *in vitro*, even decreasing LPS-mediated inflammation.\(^{180}\) However *in vivo* in rats, MTA was found to be cytotoxic when histological sections of pulp tissue were examined by light microscopy at two and seven weeks.\(^{208}\) Another study of MTA cytotoxicity on rat subcutaneous tissue found that MTA materials had only moderate inflammation at 7 days and mild inflammation at 30 days, also suggesting that MTA induces bio-mineralization.\(^{209}\) Osteoinductive properties and cytocompatibility were superior for BioRoot RCS compared to the ZOE Kerr’s Pulp Canal Sealer.\(^{210}\) Over time, EndoSequence BC sealer retains more pronounced cytotoxicity to osteoblast progenitors than AH Plus, even after six weeks.\(^{211}\)

Resin sealers as a whole have limited biocompatibility when unset. Unset epoxy sealers are genotoxic in mammalian cell mutation assays, attributed to residual monomer and formaldehyde.\(^{212,22}\) Set sealers show equivocal genotoxic results, and no genotoxic activity was seen after 24 h. However, it has been noted that epoxy sealers like AH 26 release formaldehyde even two days after being mixed.\(^{206}\) AH Plus is modified such that formaldehyde is not released. High levels of inflammation have also been detected in periapical and subcutaneous tissues after the use of epoxy resin-based sealers.\(^{189,219}\) In a rat model study, AH Plus induced milder inflammatory response than a ZOE sealer in the periapical tissue.\(^{214}\)

Methacrylate polymer has negligible cytotoxicity when set and demonstrated cytotoxicity or inflammation only early in the setting process.\(^{216,218}\) Incompletely cured methyl methacrylate (MMA), monomer/polymer is cytotoxic although considered the least toxic monomer used in dentistry.\(^{216,218}\) When paired with TBB, residual MMA is reduced over time.\(^{109,215}\) Leachable materials from methacrylate-based materials, including triethylene glycol dimethacrylate (TEGDMA), urethane dimethacrylate (UDMA), 2-hydroxyethyl methacrylate (HEMA) and polyethylene glycol dimethacrylate (PEGDMA), have shown time-dependent increases in cell death.\(^{219}\) EndoREZ, a UDMA type of methacrylate-based material, was the most cytotoxic compared to an epoxy resin-based sealer (AH Plus) and a silicone-based sealer (RoekoSeal). Methacrylate resin-based sealers (Real Seal and EndoREZ) have been shown to be more cytotoxic when compared with a salicylate-based (Apexit Plus) or epoxy resin-based sealer (AH Plus), based on a study testing inflammatory biomarkers.\(^{221}\) However, in comparison with their epoxy resin-based counterparts (AH Plus), methacrylate-based sealers (Hybrid Root SEAL/ MetaSEAL and Super-Bond RC Sealer (Accel)) are less cytotoxic in plated cultures.\(^{222}\) This indicates
that methyl methacrylate (MMA)-based products are more suitable in clinics than other methacrylate-based sealers.

Although their components are biocompatible, Sealapex, CRCS, and Apexit are still elicited inflammatory reactions due to poor seal. In vivo degradation of seal and incomplete fills may be the reason for added inflammation in these cases. MTA Fillapex was also found to cause both a high level of cytotoxicity to human fibroblast cells and an increase in inflammatory mediators when freshly mixed as well as five weeks after being mixed. Eight root canal sealers were compared for cytotoxicity for up to 72 h with human gingival fibroblasts. The tricalcium silicates and AH Plus has the highest cell viability at 24 h. However viability diminished with all after 72 h.

In summary, poor biocompatibility was noted in ZOE sealers while superior biocompatibility is an attribute for silicone-based sealers and tricalcium silicate-based sealers. AH Plus has better biocompatibility than AH 26 in epoxy resin sealers. Moderate biocompatibility is noted in methacrylate-based systems, glass ionomer sealers, and salicylate-based sealers. In epoxy resin and methacrylate resin sealers, unset sealer is less compatible than set sealer. Better biocompatibility is noted in MMA-TBB resin compared to other resin sealers.

CLINICAL IMPLICATION AND FUTURE DIRECTIONS

Pulp diagnosis as vital or necrotic is important for selection of an endodontic sealer for clinical use. In vital pulp (pulpitis) cases, the therapeutic effects of sealers are not necessary under the asepsis technique NSRCT, based on study by Kakehashi et al. Therefore, sealers which have shown effective sealing, summarized in Table 2, are a good choice. While tricalcium silicate sealers show the least leakage, they have slow setting times. Therefore, tricalcium silicate sealers are not a good choice if post/core/build-up must occur on the same day together with endodontic obturation. In necrotic pulp cases, especially cases with large apical radiolucency, the therapeutic effects of tricalcium silicate-based sealers are useful. A medicated sealer to kill bacteria should increase the chances of long-term success. Cases of large apical radiolucency diagnosed with questionable or unfavorable prognoses are expected to benefit from sealer-driven therapeutic effects. Salicylate-based (calcium-hydroxide-containing) are good choices if post/core/build-up is performed immediately after completion of endodontic obturation. A clinician has the responsibility to decide the top priority for the patient: good sealing or a therapeutic effect.

Coronal seal by final permanent restoration is mandatory for long-term clinical success, regardless of sealer choice. The technical quality of the coronal restoration is more important than the technical quality of the endodontic treatment for apical periodontal health. Currently, manufacturers provide separate systems of endodontic obturation by gutta-percha and sealer, post/core/build-up, and final permanent restoration. Currently, it is difficult to differentiate sealer from gutta-percha on digital radiograph system and there is a limitation of detail observation of the sealer. In the future, when the current detection level of the clinical three-dimensional cone beam computed tomography (CBCT) system (about 100 µm) approaches that of the research-grade micro computed tomography (micro-CT) machine (several µm), gutta-percha and sealer would be able to differentiate and precise observation of unfilled space or void could be possible. Sealers and obturation techniques will advance significantly together with the advancement of technology. The importance of sealers will become more of a focus in clinical treatment. Clinicians will better understand the sealer’s role in preventing bacterial leakage, resulting in a successful outcome in endodontic practice.

This comprehensive review describes current types of endodontic sealers by their setting reaction type, composition, and properties. Because sealing ability is very important in achieving the best clinical outcome, the relative degree of microleakage among all the relevant sealers was calculated by way of a meta-analysis of relevant literature. Compared to AH Plus, tricalcium silicate sealers showed the lowest relative microleakage among the sealers assessed, followed by silicone sealers and other non-AH Plus epoxy resin sealers. Tricalcium silicate sealers also exhibit the most favorable antimicrobial effect and excellent biocompatibility. Future sealers developed should ideally combine a hermetic seal with therapeutic effects.

ACKNOWLEDGMENTS

This publication was supported by the University of New England Office of Research and Scholarship. The authors thank Dr. Qiang Zhu for critical advice in manuscript preparation. The authors also thank Ms. Arianna Elmquist, Ms. Ivy Shen, Ms. Tenzin Tamula, Mr. Brody Valley, and Dr. Sahar Zare for administrative support. The authors also thank Ms. Elizabeth J. Dyer for reference support and Ms. Lori Rand for writing consultation and editing.

REFERENCES

6) Salz U, Poppe B, Sbicego S, Roulet JP. Sealing properties of a
49) Spangberg LS. In vitro assessment of the toxicity of endodontic
716

215) Hirabayashi C, Imai Y. Studies on MMA-TBB resin. I. Comparison of TBB and other initiators in the polymerization

