Use of Functional Strengthening, Balance Training, and Stretching In The Treatment Of A Patient Following a T11-L5 Spinal Fusion: A Case Report Anna Sidloski, B.S., DPT student UNIVERSITY OF NEW ENGLAND Brian T. Swanson, PT, DSc, OCS, FAAOMPT

Unique

- Abundant evidence available regarding treatment approaches for patients suffering from low back pain (LBP)
- Limited research focusing on PT treatment status post-multilevel spinal fusion with postural impairments
- Must work within postoperative restrictions
- May have delayed healing due to smoking habits¹

Purpose

- Describe the management and functional improvement of a patient s/p spinal fusion with:
 - Severe postural impairments
 - Elevated fall risk
 - High levels of low back pain

Foundation

- Lumbar spinal fusion surgery is utilized to manage LBP and instability¹
- Pain often persists post-operatively
- Age-related hyperkyphosis may contribute to ADL difficulty, \downarrow quality of life, and \uparrow mortality rates²
- Evidence supports use of Transverse Abdominis recruitment and hip strengthening exercises in patients with LBP^{3,4}

Patient Description

Examination		
History		
3 year-old male 8 weeks s/p T11-L5 binal fusion		
OPD, smoked 2 packs per day		

- Patient did not exercise pre-operatively
- Used rolling walker in community for 1 year pre-operatively
- No assistive device use at home
- Patient goals for PT: stand up straighter, return to work as guitar teacher

Subjective/ Objective

- NPRS
- ODI
- BBS
- DGI
- Posture Gross LE
- strength Functional
- strength assessment
- Palpation
- Gait

Department of Physical Therapy, University of New England, Portland, ME

Interventions

Biodex M/L weight shift training (shown above)

Outcomes

NPRS IE to Final

s/950440 screen wt shift large.ipg

Outcomes

	Initial Evaluation	Final Visit
Posture	 Marked flexed trunk (~45 degrees) Rounded shoulders Forward head 	 Moderate flexed trunk (~15 degrees) ↑ scapular retraction ↓ rounded shoulders/forward head
Functional strength assessment	 Fair eccentric quadriceps control Slow initiation of STS ~30 degrees hip ER side stepping 	 Good eccentric quadriceps control Fewer attempts to achieve a full standing position during STS ~15 degrees hip ER during functional side stepping
	 Iliopsoas: 4/5 Quadriceps: 4/5 Hamstrings: 4-/5 Hip ER: 4-/5 Hip abductors: 3/5 L, 3+/5 R 	 Iliopsoas: 4/5 Quadriceps: 4+/5 Hamstrings: 4+/5 Hip ER: 4/5 Hip abductors: 4-/5 Scapular retractors/ depressors: 4/5
Muscle length	 Severe iliopsoas restrictions 90/90 hamstring: 40 degrees from 0 	 Moderate iliopsoas restrictions 90/90 hamstring: 20 degrees from 0

The photos above demonstrate the patient's improvement in forward flexed posture at the final visit.

Discussion

- Lower extremity strengthening, stretching, and balance training may be beneficial treatment approaches
- Cigarette smoking may inhibit spinal fusion and adversely affect outcomes, including return to work

Limitations

- Cannot infer cause and effect between these interventions and clinical improvement of the patient
- The functional improvements and decreased forward flexed posture suggest these interventions were likely a contributing factor
- Further research is warranted

Acknowledgements

The author acknowledges Michael Wezel, DPT, FAAOMPT, for supervising and assisting with patient management. I would also like to acknowledge the patient for his compliance and participation.

References

1.Glassman SD, Anagnost SC, Parker A, Burke D, Johnson JR, Dimar JR. The Effect of Cigarette Smoking and Smoking Cessation on Spinal Fusion. Spine. 2000;25(20):2608-2615. doi:10.1097/00007632-200010150-00011

2. Kado DM, Huang M-H, Karlamangla AS, Barrett-Connor E, Greendale GA. Hyperkyphotic Posture Predicts Mortality in Older Community-Dwelling Men and Women: A Prospective Study. J Am Geriatr Soc. 2004;52(10):1662-1667. doi:10.1111/j.1532-5415.2004.52458.x

3. Saliba SA, Croy T, Guthrie R, Grooms D, Weltman A, Grindstaff TL. Differences in Transverse Abdominis Activation with Stable and Unstable Bridging Exercises In Individuals with Low Back Pain. N Am J Sports Phys Ther.: 2010;5(2):63-73. PMC2953390.

4. Cooper NA, Scavo KM, Strickland KJ, et al. Prevalence of gluteus medius weakness in people with chronic low back pain compared to healthy controls. Eur Spine J. 2015;25(4):1258-1265. doi:10.1007/s00586-015-4027-6