Balance and Strength Interventions for an Individual Post Left Sided MCA CVA: A Case Report

Background

- Cerebrovascular accident (CVA), or stroke, is the fifth leading cause of death in the United States (US) with more than 140,000 deaths each year¹
- It is the leading cause of long-term disability in the US, reducing functional mobility in more than half of all stroke survivors ages 65 or older¹
- This condition costs the US approximately 34 billion dollars a year and it is estimated to increase to 108 billion per year by 2025²
- Strokes are caused by the interruption of the blood supply to the brain, which occurs when a blood vessel ruptures (hemorrhagic stroke) or is blocked by a clot (ischemic stroke)³

Fig. 1: MRI Image of MCA CVA https://www.sciencephoto.com/media/876309/view/stroke-mri-brain-scan

Purpose

• The purpose of this case report is to describe the multifactorial management of care for a patient affected by chronic stroke in the outpatient physical therapy setting.

Case Description

- 71-year-old male with right sided hemiparesis, homonymous hemianopsia, Broca's aphagia and dysphagia
- PMH: atrial fibrillation, hypertension, hyperlipidemia, pancreatitis, and right knee osteoarthritis.
- Participated in 10 physical therapy (PT) visits over the course of 7 weeks
- Primary PT goal was to increase his level of independence with ADL performance and functional mobility
- Community ambulator with use of front wheeled walker (FWW)

Annie McKenzie, BS, SPT Doctor of Physical Therapy, University of New England, Portland, Maine

Tests & Measures

Tests & Measures	Initial Evaluation Results				Re-evalu	Re-evaluation Results			
Lower Extremity Function Scale (LEFS)	74% perceived disability rating				41% perc	41% perceived disability rating			
4 Stage Balance Test (4 SBT)	FT	ST	Т	ULS	FT	ST	Τ	ULS	
	10s	10s	3s	Os	10s	10s	10s	R:3s L:5s	
Timed Up & Go (TUG)	27s				23s	23s			
Six-minute walk test (6MWT)	132 meters				140 mete	140 meters			
30 second chair stand (30 CST)	0 repetitions				8 repetiti	8 repetitions			

4 Months prior

- Sustained two MCA CVAs
- Received hospitalbased PT

3 Months Prior

- 30 day stay at skilled nursing
- facility Received
- OT, PT, SLP
- Discharged to home

1 Month

Prior • Received

Home Health Services: PT,OT, SLP

Cardiovascular Exercise

Resistance Training

Timeline

Interventions

Balance Training

Dan Wyand, P.T. & Associates Putting bodies back in motion

Outcomes Measures

Lower Extremity Functional Scale

Re-evaluation

Manual Muscle Testing

Re-evaluation

Discussion & Conclusion

Initial Evalution

- The patient demonstrated significant subjective and functional improvements
- Improvements seen in global strength grades, AROM, 4 SBT, 30 CST, TUG, 6MWT
- Patient-reported lower extremity functional scale (LEFS) scores improved significantly
- These outcome scores suggested that combined global strengthening, cardiovascular exercise, balance training and caregiver education may improve functional mobility in this patient population.

Acknowledgements & References

The author acknowledges Matthew Somma, PT, DPT, MTC, CSCS for assistance with case report conceptualization, Kelly Wilkins, MPT, for supervision of patient management and guidance in development of plan of care, and to the patient for participating in the case report.

- 1. Claxton JS, Lutsey PL, MacLehose RF, Chen LY, Lewis TT, Alonso A. Geographic disparities in the incidence of stroke among patients with atrial fibrillation in the united states. J Stroke Cerebrovasc Dis. 2019;28(4):890-899. doi: 10.1016/j.jstrokecerebrovasdis.2018.12.005
- 2. Correction to: Heart disease and stroke Statistics—2017 update: A report from the american heart association. *Circulation*. 2017;136(10):e196. doi: 10.1161/CIR.000000000000530 3. Stroke, cerebrovascular accident. <u>www.who.int</u> Web
- site. <u>https://www.who.int/topics/cerebrovascular_accident/en/</u>. Updated 2019. Accessed July 27, 2019