Joint Stability and Proprioception Training to Reduce Chronic Pain for a Female Patient with Hypermobile Ehlers-Danlos Syndrome: A Case Report

Ashley Tullo, BS, DPT Student

Doctor of Physical Therapy Program, University of New England, Portland, Maine

Background

- **Ehlers-Danlos Syndrome (EDS)** is a heritable connective tissue disorder with many subtypes.1
- **Hypermobile EDS (hEDS)**, the most common subtype, is characterized by generalized joint hypermobility, musculoskeletal impairments, systemic involvement, and a familial history of EDS.1
- Due to the many subtypes of EDS, and general hypermobility, a categorization of all terms was created called the Hypermobility Spectrum Disorder.1,2
- Patients present with physical, psychological, and central nervous system impairments reducing their quality of life (QoL).3

Purpose

The purpose of this case report was to describe the interventions utilized for a 28-year-old female with hEDS and chronic pain with the intention of reducing symptoms and promoting return to work.

Case Description

- Patient was a 28-year-old Caucasian female, married with no children, unemployed as a carpenter at time of initial eval.
- Right knee injury with no mechanism of injury noted in high school
- Surgery of right knee due to persistent pain, revealed a meniscal tear
- Chronic overuse symptoms in bilateral elbows due to high school job and most recent employment
- "New" neck pain with numbness and tingling down her right arm that incurred most recently before initial eval
- Neck, elbow, and knee pain limiting her physical activity
- Suspected EDS diagnosis in relation to her pain

Procedure

Diagnostic Screen: EDS > POTS > MCAD

Physical Therapy Examination

Creation of POC and Interventions

Evaluation Procedure

Procedural Intervention Categories

- **Strengthening:**
 - Musculature to improve functionality and joint stability
 - Core, Hip, Rotator cuff, intercostal mm

- **Proprioception Training**

- **Postural Retraining**

- **Motor Control Reeducation**

- **Training of postural musculature to improve joint alignment and reduce pain with movement
- DNF, GH glides**

- **改善 normal functioning of muscle activity within normal movement patterns
- Self METs, Foot intrinsics**

Outcomes

Test & Measure

- **Initial Evaluation**
- **Final Evaluation**

Figure 1. Hypermobility Spectrum Disorder

<table>
<thead>
<tr>
<th>Procedural Intervention Categories</th>
<th>Cervical ROM</th>
<th>Hip MMT</th>
<th>Knee MMT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexion:</td>
<td>45°</td>
<td>45°</td>
<td>45°</td>
</tr>
<tr>
<td>Extension:</td>
<td>30°</td>
<td>30°</td>
<td>30°</td>
</tr>
<tr>
<td>Adduction:</td>
<td>5°</td>
<td>5°</td>
<td>5°</td>
</tr>
<tr>
<td>Abduction:</td>
<td>5°</td>
<td>5°</td>
<td>5°</td>
</tr>
<tr>
<td>External Rotation:</td>
<td>5°</td>
<td>5°</td>
<td>5°</td>
</tr>
<tr>
<td>Internal Rotation:</td>
<td>5°</td>
<td>5°</td>
<td>5°</td>
</tr>
<tr>
<td>Knee flexion: 0-30°</td>
<td>30°</td>
<td>30°</td>
<td>30°</td>
</tr>
<tr>
<td>Standing knee flexion: 0-30°</td>
<td>30°</td>
<td>30°</td>
<td>30°</td>
</tr>
</tbody>
</table>

Figure 2. Strengthening

- Intercostal strengthening by rib expansion with resistance band

Figure 3. Postural Retraining

- Glenohumeral posterior glide with ball

Figure 4. Proprioception Training

- Drinking Bird

Figure 5A. Motor Control Reeducation

- Pelvic balance: Self MET with contralateral hip flexion and extension

Figure 6. Proprioception Testing Outcome

**Figure 6: Red line represents targeted 30° of knee flexion the patient is trying to achieve with eyes closed during proprioception testing.

Conclusion

- The patient demonstrated improvement in strength, pain, proprioception, range of motion, and functional mobility.
- Graded strengthening, postural retraining, proprioception training, and motor control reeducation were shown to be the most effective way to address symptoms.
- More research needs to be conducted on specific physical therapy interventions for EDS patients to improve their QoL and function.

Acknowledgments

The author acknowledges Kayle Cuthbert, PT, PPCP, for the assistance with this case report conceptualization, Chie Tadaki, PT, DPT, for the assistance with this case report conceptualization, and the patient for participating in this case report.

Contact Information

Ashley Tullo,

PhD Student, Portland, ME 04103

Address all correspondence to attullo@une.edu

References

2. Hypermobile EDS, the Most Common Subtype. 2023. Available at: [Link](https://example.com/heds).