Balance and Gait Training to Reduce Fall Risk in a Patient with Bilateral Foot and Hand Deformities Secondary to Rheumatoid Arthritis: A Case Report

Kirsten Bombardier, BS, DPT Student
Department of Physical Therapy, University of New England, Portland, Maine

Background
- Each year, one out of three adults over the age of 65 suffers a fall. Although the risk of suffering a fall increases with age, falls are not an unavoidable aspect of the aging process.1
- Fall risk can be heightened in patients with medical comorbidities that impact the physiological senses which help maintain balance.2
- Rheumatoid arthritis (RA) is a chronic inflammatory disorder that affects the lining of the joints and causes painful swelling that can eventually result in bone erosion and joint deformity.3
- The fall incidence rate in individuals with RA is 0.62 falls per person per year as compared to a fall incidence rate of 0.45 falls per person per year in healthy elderly individuals.3

Case Description
- 84 year old female who suffered a fall likely due to structural deformities secondary to RA that impaired her balance and ability to safely ambulate.
- Fall resulted in a right olecranon fracture and subsequent open reduction internal fixation for surgical repair.
- Transferred to a skilled facility for continued care.

Purpose
- To provide an overview of the physical therapy plan of care for a patient at high risk for falls.
- Procedural interventions focused on balance and gait training while accommodating for the patient’s bilateral foot and hand deformities secondary to RA.

Figure A and B: Resting position of the patient’s bilateral foot and hand deformities secondary to rheumatoid arthritis. She presented with grossly 25% of AROM in bilateral feet and hands.

Interventions
- Balance
 - Static and dynamic
 - Sitting and standing
 - Weight shifting laterally, A/P
 - Functional reaching
 - Altering visual and somatosensory input (foam, eyes closed)

- Gait
 - Verbal cuing
 - Repetition
 - Endurance
 - Dynamic gait obstacle course
 - Dual task ambulation

- Functional Training
 - Bed mobility and transfer training
 - Variable practice altering surfaces, surface height, armrestbedrails

- Strength
 - Lower extremity strengthening with ankle weights and resistance bands
 - Recumbent bike

Examination

<table>
<thead>
<tr>
<th>Tests & Measures</th>
<th>Initial Evaluation Results</th>
<th>Discharge Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bed Mobility</td>
<td>MInA to lift trunk from supine position</td>
<td>Independent</td>
</tr>
<tr>
<td>Supine to Sit</td>
<td>MInA for upper body and trunk</td>
<td>Independent</td>
</tr>
<tr>
<td>Transfers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sit to Stand</td>
<td>MInA with hemi-walker, used L UE to push from surface</td>
<td>SBA with hemi-walker, used L UE to push from surface</td>
</tr>
<tr>
<td>Stand to Sit</td>
<td>MInA for controlled descent, verbal cues to reach back for surface with L UE after feeling the surface on the back of her legs</td>
<td>Modified independent with hemi-walker</td>
</tr>
<tr>
<td>Ambulation</td>
<td>1x20ft with hemi-walker and CGA</td>
<td>2x200ft with hemi-walker and distant supervision</td>
</tr>
<tr>
<td>Gait Analysis</td>
<td>Unsteady gait, foot-flat contact, decreased step length, decreased cadence, forward trunk lean, out-toeing laterally</td>
<td>Unsteady gait at times, improved step length, improved cadence, continuous stepping, slight forward trunk lean, out-toeing laterally</td>
</tr>
<tr>
<td>Balance</td>
<td>Sitting</td>
<td>Standing</td>
</tr>
<tr>
<td>Static</td>
<td>Good</td>
<td>Fair*</td>
</tr>
<tr>
<td>Dynamic</td>
<td>Good</td>
<td>Fair</td>
</tr>
<tr>
<td>Activity Tolerance</td>
<td>Minimal limitations, sustained ordinary activities cause fatigue</td>
<td>Age appropriate activities do not cause increased fatigue</td>
</tr>
<tr>
<td>Time Up & Go</td>
<td>78 seconds with hemi-walker and MInA for sit>stand</td>
<td>48 seconds with hemi-walker and SBA for sit>stand</td>
</tr>
<tr>
<td>Tinetti Performance Oriented Mobility Assessment</td>
<td>10/28</td>
<td>18/28</td>
</tr>
<tr>
<td>Falls Efficacy Scale</td>
<td>70/100</td>
<td>27/100</td>
</tr>
</tbody>
</table>

I = left, UE = upper extremity, MInA = minimal assist, sit>stand = to and from sit to stand, SBA = stand-by assist

Outcomes
- After 3 weeks of interventions, the patient achieved higher levels of independence on all mobility tasks.
- The patient ambulated with a hemi-walker on indoor surfaces 2x200ft with distant supervision.
- The patient decreased her fall risk as demonstrated by improved TUG, POMA and FES scores.

Discussion
- The patient demonstrated improved endurance, strength, balance, bed mobility, transfers and gait.
- The positive outcomes of patient-centered balance and gait training reflected upon the patient’s improved TUG, POMA and FES scores.
- Patient-centered PT with a focus on balance and gait training appeared to make significant improvements in this patient’s overall function and decrease her fall risk.
- Future research studies analyzing the efficacy of particular gait training and neuromuscular re-education interventions targeting fall risk in a population of individuals experiencing instability secondary to RA related structural changes are necessary in order to generalize the results to different patients.

Acknowledgements
Cheryl Milton PT, MS, for her supervision and guidance while collecting data and treating this patient as well as Amy Litterini PT, DPT, for poster and manuscript conceptualization.

References