The Use of Aquatic Therapy in Rehabilitation for a Patient Following Complicated Reverse Total Shoulder Arthroplasty: A Case Report
Alyssa Grigware, BS, DPT Student
University of New England, Doctor of Physical Therapy Program
Portland, Maine

Background and Purpose
- According to the American Physical Therapy Association, aquatic physical therapy is a evidence-based and skilled practice of physical therapy in an aquatic environment by a physical therapist, and includes interventions designed to improve or maintain:
 - Function
 - Aerobic capacity/endurance conditioning
 - Balance, coordination and agility
 - Body mechanics and postural stabilization
 - Flexibility
 - Gait and locomotion
 - Relaxation
- Muscle strength, power, and endurance
- Reverse Total Shoulder Arthroplasty (rTSA) is designed specifically for the treatment of glenohumeral (GH) arthritis when it is associated with irreparable rotator cuff damage, among other complex circumstances.
- A typical protocol will progress from joint protection, passive range of motion, and isometric strengthening to moderate strengthening and active range of motion. There is little published on the implementation of a pool environment on rTSA rehabilitation.
- These patients have a higher risk of dislocation and must avoid GH extension past neutral, combined GH abduction-internal rotation-adduction, and overworking of the deltoid, as it is now the primary muscle for upper extremity elevation.
- The goal in performing an rTSA is to restore “some basic shoulder function” in the GH joint and eliminate pain. Normal/full motion is not an expected outcome.
- The purpose of this case report was to report upon the outcomes of aquatic therapy on the biomechanical and functional retraining of a patient following a rTSA.

Patient Case Description
- 58 year old female
- Referred to outpatient therapy 8-weeks status post left rTSA, following inpatient stay on site.
- Relevant clinical findings at initial examination were:
 - Unable to demonstrate left shoulder active range of motion
 - 2/5 resisted isometric strength for left shoulder abduction and flexion
 - Palpable increased tightness and spasm with pain in left bicep, deltoid and pectoralis minor
 - She presented with an inability to recruit and activate any left GH elevation, as well as heightened pain response and associated anxiety, compensating with scapular/kinesiosis (ST) elevation and maintaining a highly guarded position of her left upper extremity.

Interventions
- **Pool-based**
 - Floating dumbbells
 - Aquabands
 - Filder board resistance/water
 - Weighted cuff tasks
 - In and out of water active range of motion
 - Active assisted range of motion with ladder board
 - Balance tasks
 - Plantargrade pushups at steps
 - Functional overhead manipulation tasks
 - Ball toss, arms out of water
- **Land-based**
 - Self in upper extremity banking
 - Thera-band strengthening
 - Light free weight strengthening
 - Passive range of motion and stretching
 - Therapeutic massage and pressure point release techniques
 - Active range of motion
 - Upper extremity wall slides and stretching
 - Plantargrade push ups
 - Functional reaching tasks in mock apartment

Outcomes
- While range of motion was her principal outcome measure, the patient also met all long-term pain and functional goals.
- Task-related, patient goals included cleaning her floors, hanging up her clothes in the closet, carrying shopping and grocery bags, fastening her seatbelt, driving, and putting the dishes away.
- While she was her principal outcome measure, she was able to increase her activities of daily living.
- She presented with an inability to recruit and activate any left GH elevation, as well as heightened pain response and associated anxiety, compensating with scapular/kinesiosis (ST) elevation and maintaining a highly guarded position of her left upper extremity.

Discussion
- This patient improved mechanically and functionally during her episode of care and those improvements can be seen in her increased active range motion, increased strength, decreased pain, decreased activity limitations, and decreased participation restrictions.
- She missed a few treatment sessions when her husband passed away, taking time to grieve and be with her family, but returned to therapy with what she described to be “an emotional weight off my shoulders.”
- Pool therapy may have delivered relaxation and psychological benefits to this patient with cognitive and emotional stressors during her care.
- Assistance with early mobility and strengthening may have been provided through the principles of water. A 2015 study by Kelly et al. was able to yield that shoulder elevation in the water at slower speeds resulted in a significantly lower activation of the rotator cuff and synergistic muscles—potentially beneficial to patient who now rely on the extra work of deltoid muscles for upper extremity elevation.
- The aquatic principles may have also aided the patient in regaining function in her new shoulder and decreasing post-surgical pain. A 2015 systematic review by Goehring et al. showed clinically significant differences in pain, function, and quality of life in favor of aquatic therapy for rehabilitation of total knee and total hip arthroplasty. An opportunity exists for similar studies focused on upper extremity joint replacement rehabilitation.
- The injection of muscle relaxer into her problematic shoulder and arm muscles may have been the pivotal co-treatment.
- The patient’s confidence, attitude and mobility were notably improved in her first visit following the injection.
- The management and resolution of her painful muscular shortening and spasm through the injection was believed to be key in the outcomes and satisfaction she was able to achieve.
- Future studies on aquatic therapy in joint replacements, particularly procedures involving the upper extremity, would be beneficial to the evidence-based treatment of our actively aging, longer-living population.

References