Use of the Task-Oriented Approach for Chronic Inflammatory Demyelinating Polyneuropathy: A Case Report

Alison Newell BS, DPT Student; Amy Litterini PT, DPT
University of New England, Department of Physical Therapy, Portland, ME

Unique

• Extensive literature exists regarding medical management of chronic inflammatory demyelinating polyneuropathy (CIDP).1
• Limited research exists regarding physical therapy (PT) management for patients with CIDP.
• The abnormal onset of severe mobility limitations, and lack of response to medical management, demanded further inquiry into this case.

Description

• 74-year-old Caucasian male diagnosed with CIDP 3 years prior with several bouts of symptoms since initial onset
• Initially prescribed intravenous immunoglobulin (IVIG) and prednisone which worked well for the patient who was moderately active prior to this relapse
• Four months prior to this admission, he experienced a relapse after receiving a generic form of IVIG.
• Impairments identified: decreased strength and AROM in bilateral LEs (R > L); impaired proprioception, coordination, and balance; fatigue and decreased endurance; pain in his hands; inability to walk
• Patient goals: to walk again and return home independently

Interventions

• Plan of care: 90 minutes each of PT and occupational therapy daily, 6x/week x17 days
• Goals: to improve the noted impairments and develop more efficient compensatory strategies using the TOA
• Initial treatments included therapeutic and aerobic exercise, neuromuscular re-education, balance training, and functional mobility training.
• Stretching and moist heat were added on day 14.

Purpose

Using evidence-based resources on CIDP and Guillain-Barre Syndrome (GBS), this case report describes the PT management of a patient with CIDP using the task-oriented approach (TOA) as a framework for clinical decision-making.1,3,6

Foundation

• CIDP is an acquired neurological disorder similar to GBS with a rare prevalence of 2-7.7/100,000.7
• Etiology and pathogenesis are largely unknown but are thought to be immunological, targeting the myelin of peripheral nerves.7,8
• TOA is based upon systems theory with influence from motor learning and motor control theories.
• Systems theory states abnormal movements are related to deficits in one or more system(s) and are comprised of the body’s existing systems’ attempts to compensate.
• Compensations are not always ideal; interventions can be designed to optimize strategies and complete functional tasks more effectively and efficiently.6

Figure 4. Interventions: Images above (Top from left to right): Seated Balance Training; Standing LE Motor Control Exercise; Seated LE Motor Control Exercise; Endurance Training on the NuStep® (Bottom from left to right): Sit to Stand Training with SW and knee cage; Transfer Training with SW and knee cage; Gait Training with SW and knee cage.

Figure 3. Visual model of the TOA.8

Observations

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>At Initial Evaluation</th>
<th>At Discharge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berg Balance Scale</td>
<td>4/56</td>
<td>5/56</td>
</tr>
<tr>
<td>Modified Functional Reach Test</td>
<td>Anterior: 7" Right: 5" Left: 6"</td>
<td>Anterior: 14" Right: 10" Left: 8"</td>
</tr>
<tr>
<td>Timed Up and Go</td>
<td>Completed in 01:39 with ModAx2 and SW</td>
<td>Unable to complete (10' then 6') with minAx1 CGAx1 and SW</td>
</tr>
<tr>
<td>Bed Mobility</td>
<td>ModAx2 MinAx2</td>
<td>CGAx1</td>
</tr>
<tr>
<td>Sit to Stand</td>
<td>ModAx2 CGAx1</td>
<td>ModAx2</td>
</tr>
<tr>
<td>Transfers</td>
<td>ModAx2 CGAx1</td>
<td>ModAx2</td>
</tr>
<tr>
<td>Ambulation</td>
<td>ModAx2 MinAx1 CGAx1</td>
<td></td>
</tr>
</tbody>
</table>

Outcomes Abbreviation Key: ModAx#: moderate assistance of # of people; SW: standard walker; minAx#: minimal assistance of # of people

Conclusion

• Using TOA as a framework and guidelines for PT management of GBS provided guidance for the treatment of this patient with the challenging diagnosis of CIDP.
• System-based impairments and maladaptive strategies were identified via task analysis, which helped to devise both corrective and compensatory interventions.
• Lack of substantial progress at discharge may have been attributed to progression of the disease, decreased response to IVIG, the tapering of prednisone, or decreased motivation after discharge notice.
• Research with larger samples, possibly via a multicenter study, and other case reports would be beneficial to further guide the PT management of patients with CIDP.

Acknowledgements

This author would like to acknowledge Rachel Emery, DPT, for her clinical guidance and assistance with obtaining photos and videos to supplement this case report and the patient for his participation and insight.

References

1. Lewis RA. Chronic inflammatory demyelinating polyneuropathy: Treatment and prognosis. In: UpToDate, Shettert JL, Deute L (Eds), UpToDate, Waltham, MA, (accessed on July 17, 2016).
4. Lemos MH, Chronic inflammatory demyelinating polyneuropathy: Etiology, clinical features, and diagnosis. In: UpToDate, Shettert JL, Deute L (Eds), UpToDate, Waltham, MA, (accessed on July 17, 2010).
7. ModAx is the symbol for minimal assistance. ModAx#: minimal assistance of # of people; SW: standard walker; minAx#: minimal assistance of # of people.
8. ModAx2 is the symbol for moderate assistance. ModAx2#: moderate assistance of # of people; SW: standard walker; minAx2#: minimal assistance of # of people.
9. ModAx is the symbol for minimal assistance. ModAx#: minimal assistance of # of people; SW: standard walker; minAx#: minimal assistance of # of people.
10. ModAx2 is the symbol for moderate assistance. ModAx2#: moderate assistance of # of people; SW: standard walker; minAx2#: minimal assistance of # of people.

Disclosures

No disclosures.